Digital Radiography vs Conventional Radiography: Is Digital Radiography in Compliance With the Code?

Author(s):  
Richard W. Poland ◽  
David M. Immel ◽  
Boyd D. Howard

Savannah River Technology Center filmless radiographic imaging system specialists have been “champions” of filmless radiographic imaging at the Savannah River Site since 1993. Recently a study was done comparing the differences between conventional film radiography and lens-coupled, charge-coupled-device digital radiography. Characteristics of both imaging methods that were considered in the study included resolution, latitude (called dynamic range by digital radiography imaging specialists), and modulation transfer functions. The results of those comparative experiments will be presented. A description of the lens-coupled, digital radiography imaging system will be provided.

Radiology ◽  
2000 ◽  
Vol 214 (2) ◽  
pp. 497-502 ◽  
Author(s):  
Gen Iinuma ◽  
Kyosuke Ushio ◽  
Tsutomu Ishikawa ◽  
Shigeru Nawano ◽  
Ryuzou Sekiguchi ◽  
...  

1970 ◽  
Vol 09 (03) ◽  
pp. 203-217
Author(s):  
Leslie Bennett ◽  
Zahoor Alvi

SummaryA simple film density approach was used to obtain modulation transfer functions for a scintillation camera. Counting rate was measured in the case of rectilinear scanner. Point sources were prepared of 131I and 99mTc and point source images were obtained on X-ray film.Density distribution along the diameter of the images was converted into corresponding exposure values. Line spread functions were obtained as areas under the distribution curves and then MTF was solved for each spatial frequency considered. Plots of MTF versus spatial frequency show in one glance the relative responses of either the two imaging systems or the responses of one imaging system for two different commonly used radionuclides.


2019 ◽  
Vol 63 (6) ◽  
pp. 60406-1-60406-11 ◽  
Author(s):  
Edward W. S. Fry ◽  
Sophie Triantaphillidou ◽  
Robin B. Jenkin ◽  
John R. Jarvis ◽  
Ralph E. Jacobson

Abstract The Modulation Transfer Function (MTF) and the Noise Power Spectrum (NPS) characterize imaging system sharpness/resolution and noise, respectively. Both measures are based on linear system theory. However, they are applied routinely to scene-dependent systems applying non-linear, content-aware image signal processing. For such systems, MTFs/NPSs are derived inaccurately from traditional test charts containing edges, sinusoids, noise or uniform luminance signals, which are unrepresentative of natural scene signals. The dead leaves test chart delivers improved measurements from scene-dependent systems but still has its limitations. In this article, the authors validate novel scene-and-process-dependent MTF (SPD-MTF) and NPS (SPD-NPS) measures that characterize (i) system performance concerning one scene, (ii) average real-world performance concerning many scenes or (iii) the level of system scene dependency. The authors also derive novel SPD-NPS and SPD-MTF measures using the dead leaves chart. They demonstrate that the proposed measures are robust and preferable for scene-dependent systems to current measures.


1987 ◽  
Vol 28 (4) ◽  
pp. 461-466 ◽  
Author(s):  
B. S. Slasky ◽  
D. Sashin ◽  
J. A. Horton ◽  
E. J. Sternglass ◽  
K. M. Bron ◽  
...  

Diode array digital radiography DADR is a method of radiographic imaging that combines the advantages of computer technology with self-scanning linear diode arrays. These digital images are superior to those obtained by film in recording and displaying information in the lightest and the darkest areas of the film, resulting in a balanced image of the entire thorax without compromising detail, and at reduced radiation dose. This is a direct result of the wide dynamic range, high contrast sensitivity, fiber optic coupling, small diode size, short exposure time, and rejection of scattered x-rays of the system coupled with digital post-processing enhancement of the image displayed at 1024×1024 pixels.


2014 ◽  
Vol 71 (11) ◽  
pp. 1006-1012 ◽  
Author(s):  
Djordje Antonijevic ◽  
Dragan Ilic ◽  
Vesna Medic ◽  
Slobodan Dodic ◽  
Kosovka Obradovic-Djuricic ◽  
...  

Bacgroun/Aim. The radiopacity of an endodontic material can considerably vary as measured on film and a digital sensor. Digital radiography offers numerous advantages over convential film-based radiography in dental clinical practice regarding both diagnostic capabilities and postintervention procedures. The aim of this study was to investigate the capacity of conventional and charge-conpled device (CCD) based digital radiography to detect material on radiograph depending on the radio-pacifying agent present in the material. Methods. Experimental cements were formulated by mixing Portland cement with the following radiopacifying agents: zinc oxide (ZnO), zirconium oxide (ZrO2), titanium dioxide (TiO2), barium sulphate (BaSO4), iodoform (CHI3), bismuth oxide (Bi2O3) and ytterbium trifluoride (YbF3). In addition, 5 endodontic materials comprising Endomethasone?, Diaket?, N2?, Roth 801? and Acroseal? were investigated to serve as control. Per three specimens of each material were radiographed alongside an aluminum step wedge on film (Eastman Kodak Company?, Rochester, NY) and a CCD-based digital sensor (Trophy Radiologie?, Cedex, France). Radiopacity values were calculated by converting the radiographic densities of the specimens expressed as a mean optical densities or mean grey scale values into equivalent thickness of aluminum. Results. Twoway ANOVA detected no significant differences with respect to the imaging system (p > 0.05), but the differences were significant with respect to radiopacifier (p < 0.001) and the interaction of the two factors (p < 0.05). Paired ttest revealed significant differences between the methods used for pure Portland cement, all concentrations of BaSO4 and CHI3, 10% and 20% additions of ZrO2 and Bi2O3 and 10% and 30% addition of YbF3 (p < 0.05). Conclusion. The materials which incorporate CHI3 or BaSO4 as radiopacifying agents are expected to be significantly more radiopaque on a digital sensor than on film. During clinical practice one should concern to the quality of contrast assessement obtained by digital according to conventional radiography.


Author(s):  
Hannes Lichte

Generally, the electron object wave o(r) is modulated both in amplitude and phase. In the image plane of an ideal imaging system we would expect to find an image wave b(r) that is modulated in exactly the same way, i. e. b(r) =o(r). If, however, there are aberrations, the image wave instead reads as b(r) =o(r) * FT(WTF) i. e. the convolution of the object wave with the Fourier transform of the wave transfer function WTF . Taking into account chromatic aberration, illumination divergence and the wave aberration of the objective lens, one finds WTF(R) = Echrom(R)Ediv(R).exp(iX(R)) . The envelope functions Echrom(R) and Ediv(R) damp the image wave, whereas the effect of the wave aberration X(R) is to disorder amplitude and phase according to real and imaginary part of exp(iX(R)) , as is schematically sketched in fig. 1.Since in ordinary electron microscopy only the amplitude of the image wave can be recorded by the intensity of the image, the wave aberration has to be chosen such that the object component of interest (phase or amplitude) is directed into the image amplitude. Using an aberration free objective lens, for X=0 one sees the object amplitude, for X= π/2 (“Zernike phase contrast”) the object phase. For a real objective lens, however, the wave aberration is given by X(R) = 2π (.25 Csλ3R4 + 0.5ΔzλR2), Cs meaning the coefficient of spherical aberration and Δz defocusing. Consequently, the transfer functions sin X(R) and cos(X(R)) strongly depend on R such that amplitude and phase of the image wave represent only fragments of the object which, fortunately, supplement each other. However, recording only the amplitude gives rise to the fundamental problems, restricting resolution and interpretability of ordinary electron images:


2021 ◽  
Vol 217 (2) ◽  
Author(s):  
Alexander G. Hayes ◽  
P. Corlies ◽  
C. Tate ◽  
M. Barrington ◽  
J. F. Bell ◽  
...  

AbstractThe NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ($25.5^{\circ }\, \times 19.1^{\circ }\ \mathrm{FOV}$ 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ($6.2^{\circ } \, \times 4.2^{\circ }\ \mathrm{FOV}$ 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of $24.3\pm 0.1$ 24.3 ± 0.1  cm and a toe-in angle of $1.17\pm 0.03^{\circ }$ 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with $1600\times 1200$ 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26$^{th}$ t h and May 9$^{th}$ t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be $<10\%$ < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows $\mathrm{MTF}_{\mathit{Nyquist}}=0.26-0.50$ MTF Nyquist = 0.26 − 0.50 across all zoom, focus, and filter positions, exceeding the $>0.2$ > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples.


Sign in / Sign up

Export Citation Format

Share Document