Evaluation of Fracture Toughness From Instrumented Charpy Impact Tests for a Reactor Pressure Vessel Steel

Author(s):  
A. Parrot ◽  
P. Forget ◽  
A. Dahl

The monitoring of neutron induced embrittlement of nuclear power plants is provided using Charpy impact test in the surveillance program. However structural integrity assessments require the fracture toughness. Some empirical formulas have been developed but no direct relationship was found. The aim of our study is to determine the fracture toughness of a Reactor Pressure Vessel steel from instrumented Charpy impact test using local approach to fracture. This non-empirical method has been applied in the brittle domain as well as in the ductile to brittle transition for an A508 C1.3 steel. In the brittle domain, fracture occurs by cleavage and can be modeled with the Beremin model. Fracture toughness has been successfully determined from Charpy impact tests results and the influence of several parameters (mesh design, Beremin model with one or two parameters, number of Charpy impact tests results) on the results was considered. In the ductile to brittle transition, cleavage fracture is preceded by ductile crack growth. Ductile tearing has been accounted for in the simulations with the Rousselier model whereas cleavage fracture is still described with the Beremin model. The determination of fracture toughness from Charpy impact tests gave encouraging results but finite element simulations have to be refined in order to improve predictions.

2011 ◽  
Vol 465 ◽  
pp. 568-573
Author(s):  
Sergiy Kotrechko ◽  
Sergii Mamedov ◽  
Ivo Dlouhy ◽  
Vladislav Kozák

Possibility of use of Local Approach (LA) to prediction of the effect of neutron irradiation on the fracture toughness of pressure vessel steel is discussed. The fundamental of new version of LA to fracture is briefly stated. Specific feature of this version of LA is that Weibull distribution is not used for description of distribution function of fracture probability. Probability of fracture is estimated by modeling of regularities of the crack nucleus formation and instability in polycrystal. Findings on simulation of fracture of reactor pressure vessel steel 2Cr-Mo-V in initial and irradiated states are presented.


Sign in / Sign up

Export Citation Format

Share Document