charpy impact test
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Shreyas Biswas

Abstract: The objective of the present is to investigate hollow glass microspheres (HGMs) experimentally and carry out design analysis of hollow glass microsphere loaded PP/ABS composites. The tensile and notched Charpy impact test of HGM-filled acrylonitrile-butadiene-styrene copolymer (ABS) and Polypropylene (PP) composites will be studied with varying the concentrations of PP/ABS composite with HGM. Also further the design analysis will be studied by conducting the simulation under the same criteria and comparing the results at the end. This is done to introduce a light weight material without compromising specific strength of PP/ABS composite by adding HGM to the composite. Keywords: Hollow Glass Microsphere (HGM), ABS-Acrylonitrile butadiene styrene, PP- Polypropylene, Composites.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Madhuri Chandrashekhar Deshpande ◽  
Rajesh Chaudhari ◽  
Ramesh Narayanan ◽  
Harishwar Kale

Purpose This study aims to develop indium-based solders for cryogenic applications. Design/methodology/approach This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC. Findings It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications Originality/value DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012004
Author(s):  
W H Choong ◽  
H H Hamidi ◽  
K B Yeo

Abstract This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80°C before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4448
Author(s):  
Janez Slapnik ◽  
Thomas Lucyshyn ◽  
Gerald Pinter

Engineering polymers reinforced with renewable fibres (RF) are an attractive class of materials, due to their excellent mechanical performance and low environmental impact. However, the successful preparation of such composites has proven to be challenging due to the low thermal stability of RF. The aim of the present study was to investigate how different RF behaves under increased processing temperatures and correlate the thermal properties of the fibres to the mechanical properties of composites. For this purpose, hemp, flax and Lyocell fibres were compounded into polypropylene (PP) using a co-rotating twin screw extruder and test specimens were injection moulded at temperatures ranging from 180 °C to 260 °C, with 20 K steps. The decomposition behaviour of fibres was characterised using non-isothermal and isothermal simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). The prepared composites were investigated using optical microscopy (OM), colorimetry, tensile test, Charpy impact test, dynamic mechanical analysis (DMA) and melt flow rate (MFR). Composites exhibited a decrease in mechanical performance at processing temperatures above 200 °C, with a steep decrease observed at 240 °C. Lyocell fibres exhibited the best reinforcement effect, especially at elevated processing temperatures, followed by flax and hemp fibres. It was found that the retention of the fibre reinforcement effect at elevated temperatures can be well predicted using isothermal TGA measurements.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 35
Author(s):  
Garth Raditya ◽  
Erwin Siahaan ◽  
Abrar Riza

Engine mounting is one of the car component which is has optimize function to obtain thesystem in the car is extremely perfect. The engine mounting has to be have behavior ductile by strongestenough to support the car engine whether in rest and moving position. To obtain car engine mountingwhich has these function it has to be treated by treatment. The method was used by using Heat TreatmentSystem which we were Hardening and Tempering. Heat treatment of engine mounting is needed toanalyze the microstructure and mechanical properties of low carbon steel used. Tests carried out attemperatures of 800oC, 850oC, 900oC and normal conditions without heat treatment. Then continued withimpact charpy testing, vickers hardness testing, microstructure observation using microscope and SEM.The tests are carried out in accordance with ASTM E23, ASTM E92, ASTM A370 standards. The Vickerstest results provide the lowest HV value of 118.7Hv at 900oC, while the normal condition is at 137.409Hv.The charpy impact test results give the lowest value of 0.06 j / mm2 under normal conditions, while at900oC at 0.0962 j / mm2. The results with microscopy and SEM, the greater the temperature given to heattreatment, the less pearlite will be, while the amount of ferrite and austenite increases which makes theengine mounting more toughness.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7281
Author(s):  
Daniel Łączny ◽  
Marek Macko ◽  
Krzysztof Moraczewski ◽  
Zbigniew Szczepański ◽  
Andrzej Trafarski

This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9–51.1%), bending strength (decrease 18.9–36.6%) and impact energy absorption (decrease 58.8–69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3452
Author(s):  
Sajid Naseem ◽  
Sven Wießner ◽  
Ines Kühnert ◽  
Andreas Leuteritz

This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5244
Author(s):  
Pavel Salvetr ◽  
Aleksandr Gokhman ◽  
Zbyšek Nový ◽  
Petr Motyčka ◽  
Jakub Kotous

Requirements for mechanical properties of steels are constantly increasing, and the combination of quenching and tempering is the method generally chosen for achieving high strength in medium carbon steels. This study examines the influence of various silicon contents from 1.06 to 2.49 wt% and the addition of copper (1.47 wt%) on the behavior of 1.7102 steel starting with the as-quenched state and ending with the tempered condition at the temperature of 500 °C. The microstructure was characterized by SEM and TEM, the phase composition and dislocation density were studied by XRD analysis, and mechanical properties were assessed by tensile and hardness testing, whereas tempered martensite embrittlement was assessed using Charpy impact test and the activation energy of carbide precipitation was determined by dilatometry. The benefit of copper consists in the improvement of reduction of area by tempering between 150 and 300 °C. The increase in strength due to copper precipitation occurs upon tempering at 500 °C, where strength is generally low due to a drop in dislocation density and changes in microstructure. The increasing content of silicon raises strength and dislocation density in steels, but the plastic properties of steel are limited. It was found that the silicon content of 1.5 wt% is optimum for the materials under study.


2021 ◽  
Vol 1045 ◽  
pp. 226-230
Author(s):  
Amit Kumar Thakur ◽  
Ajay Kumar Kaviti ◽  
J. Ronald Aseer

The natural fibers are the alternative to glass and other human-made fibers, because of their low cost and readily available from natural resources and acts as a reinforcing material for the polymer composites. Jute is the most widely used natural fibers among the various fibers due to its superior characteristics. Composite materials are made with different materials that are physically and chemically different alienated by interfaces. In this work, epoxy and polyester hybrid composites reinforced with jute and glass fiber were fabricated by hydraulic press method and their tensile and impact properties were compared. The mechanical properties of jute/glass hybrid composites with different layers such as tensile strength, percentage of elongation and impact strength were evaluated using ASTM specifications. Tensile and Charpy impact test results indicated that jute/glass fiber reinforced epoxy composites have shown optimum properties than polyester composites.


Sign in / Sign up

Export Citation Format

Share Document