A Numerical and Experimental Investigation of Wall-Pressure Fluctuations Induced by Sheet Cavitation Instabilities on Lifting Surface

Author(s):  
Jacques-Andre´ Astolfi ◽  
Jean-Baptiste Leroux ◽  
Olivier Coutier-Delgosha ◽  
Franc¸ois Deniset

The paper is based on some previous works of the authors aimed to study the phenomenology of cavitation instabilities. In the present work, a particular attention is paid to the analysis of spatio-temporal wall-pressure fluctuations in the context of fluid structure coupling investigations. The work is based on a numerical and experimental study, whose objective was to analyze the wall-pressure fluctuations beneath an unsteady partial cavitating flow developing on an hydrofoil. Experiments were carried in a water tunnel, on a partially cavitating hydrofoil based on extended multi-point wall pressure measurements together with flow visualizations. 2D Navier-Stokes simulations solves the RANS equations combined with a physical model of cavitation The two-phase flow mixture is considered as a homogeneous medium for which the ratio of liquid and vapor is controlled by a barotropic state law. The numerical resolution is based on the SIMPLE algorithm, modified to take into account the high compressibility of the liquid/vapor mixture. The results show that various dynamics are caught by the model in agreement with the experiments. Two main unstable dynamics were observed leading to a strong variation of surface loading. The paper provides quantitative data about the severe unsteady loading that is experienced by the structure, which should very useful in a fully problem of Fluid Structure Interaction. The possibility of a structural response of the foil to the unsteady loading and how it could promote the cavitating flow instability is also discussed.

Author(s):  
M. P. Norton ◽  
A. Pruiti

Abstract This paper addresses the issue of quantifying the internal noise levels/wall pressure fluctuations in industrial gas pipelines. This quantification of internal noise levels/wall pressure fluctuations allows for external noise radiation from pipelines to be specified in absolute levels via appropriate noise prediction models. Semi-empirical prediction models based upon (i) estimated vibration levels and radiation ratios, (ii) semi-empirical transmission loss models, and (iii) statistical energy analysis models have already been reported on by Norton and Pruiti 1,3 and are not reported on here.


Author(s):  
Chi Zhu ◽  
Jung-Hee Seo ◽  
Rajat Mittal

Abstract In this study, a novel reduced degree-of-freedom (rDOF) aortic valve model is employed to investigate the fluid-structure interaction and hemodynamics associated with aortic stenosis. The dynamics of the valve leaflets are determined by an ordinary differential equation with two parameters and this rDOF model is shown to reproduce key features of more complex valve models. The hemodynamics associated with aortic stenosis is studied for three cases: a healthy case and two stenosed cases. The focus of the study is to correlate the hemodynamic features with the source generation mechanism of systolic murmurs associated with aortic stenosis. In the healthy case, extremely weak flow fluctuations are observed. However, in the stenosed cases, simulations show significant turbulent fluctuations in the asending aorta, which are responsible for the generation of strong wall pressure fluctuations after the aortic root mostly during the deceleration phase of the systole. The intensity of the murmur generation increases with the severity of the stenosis, and the source locations for the two diseased cases studied here lies around 1.0 inlet duct diameters ($D_o$) downstream of the ascending aorta.


Author(s):  
André Baramili ◽  
Ludovic Chatellier ◽  
Laurent David ◽  
Loïc Ancian

The present study focuses on the analysis of the flow-induced vibration phenomenon typically encountered on piping systems containing an elbow. The correlation between the turbulent flow through the elbow and the dynamic forcing it yields on the piping walls was assessed experimentally. A closed water loop containing a transparent elbow was designed in order to develop fully turbulent duct flow condition. Particle Image Velocimetry (PIV) was applied in the transparent zone in order to provide unsteady data on the flow dynamics through the elbow; simultaneously, wall pressure fluctuations were measured on and around the elbow. Several flow configurations were tested in order to obtain a large coupled database linking the flow features to the resulting dynamic excitation on the walls. Finally, Partial Least Square Regression (PLSR) was applied in order to harvest the correlated information contained in multiple pressure signals at multiple time-delays and build a relationship capable of estimating the temporal evolution of the velocity field using a set of measured wall pressure signals.


Sign in / Sign up

Export Citation Format

Share Document