turbulence effect
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Rajkumar Malviya ◽  
Prashant V. Baredar ◽  
Anil Kumar

The present research intends to design an efficient receiver for solar thermal applications with a solar dish concentrator system. Thermal and dynamic analysis is carried out for different convolutions of a spiral coil, and experiments are performed for testing the modified absorber. Experimental results are validated for the spiral absorber with numerical results. Three receivers of different numbers of convolutions are analyzed, and simulation steps are performed for these receivers to make improvements in the system efficiency. Finally, 5 convolutions of a spiral coil tubular absorber are taken for the modified design of the system. Absorber position for every spiral convolution is kept at the focus of the concentrated solar dish collector to achieve maximum efficiency. Material used for the reflective surface is anodized aluminum and copper for the absorber. The diameter of the aperture for the parabolic dish collector is 1.4 m. The maximum absorber temperature for May month comes out to be 296°C, and the maximum working fluid outlet temperature is found to be 294.2°C which is near to simulating temperature of 289.59°C and 288.15°C, respectively. This innovative design of the absorber consists of a feature of a 5 mm extension to the spiral tube at the exit and entry; hence, the turbulence effect could be overcome. Experimental thermal efficiency was found the highest (i.e., η th max = 75.98 % ) for May. This work emphasizes on improving thermal performance by obtaining optimum absorber size using convolution strategy. Investigation of 5 convolutions of spiral coil tubular absorber with extended ends for obtaining optimum performance than existing work is the superiority of this work.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6426
Author(s):  
Lin Pan ◽  
Ze Zhu ◽  
Haodong Xiao ◽  
Leichong Wang

In this study, the performance of offshore wind turbines at low tip speed ratio (TSR) is studied using computational fluid dynamics (CFD), and the performance of offshore wind turbines at low tip speed ratio (TSR) is improved by revising the blade structure. First, the parameters of vertical axis offshore wind turbine are designed based on the compactness iteration, a CFD simulation model is established, and the turbulence model is selected through simulation analysis to verify the independence of grid and time step. Compared with previous experimental results, it is shown that the two-dimensional simulation only considers the plane turbulence effect, and the simulation turbulence effect performs more obviously at a high tip ratio, while the three-dimensional simulation turbulence effect has well-fitting performance at high tip ratio. Second, a J-shaped blade with optimized lower surface is proposed. The study showed that the optimized J-shaped blade significantly improved its upwind torque and wind energy capture rate. Finally, the performance of the optimized J-blade offshore wind turbine is analyzed.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 318
Author(s):  
Panagiotis J. Gripeos ◽  
Hector E. Nistazakis ◽  
Andreas D. Tsigopoulos ◽  
Vasilis Christofilakis ◽  
Evgenia Roditi

FSO communication is a viral technology among optical wireless communications, gathering the interest of both researchers and manufacturers. This is because of the many advantages associated with FSO communication, including high data rates, reliability, safety, and economy. However, there are several unavoidable drawbacks that shadow the performance of FSO systems. For example, atmospheric turbulence is a well-known problem related to the weather conditions of the channel, which causes the scintillation effect. Also, spatial jitter due to pointing errors is a critical factor of the link’s performance, caused by occasional misalignments between the transmitter and the receiver. Moreover, time jitter is another limiting agent that deteriorates the total throughput, inducing bit stream misdetections, caused by the arrival of out-of-sync pulses. All three effects have been exhaustively studied and many statistical models and interesting solutions have been proposed in the literature to estimate their magnitude and compensate for their impact. In this work, the turbulence effect was treated by Málaga distribution, the spatial jitter effect was regulated by the non-zero boresight model, and the time jitter effect was modeled by the generalized Gaussian distribution. Various modulation schemes were studied, along with DF multi-hop and optimal combining diversity techniques at the receiver’s end. New, accurate mathematical expressions of average BER performance have been obtained, and valuable conclusions were drawn thanks to the presented numerical results.


2021 ◽  
Vol 11 (14) ◽  
pp. 6319
Author(s):  
Sung-Woong Choi ◽  
Hyoung-Seock Seo ◽  
Han-Sang Kim

In the present study, the flow characteristics of butterfly valves with different sizes DN 80 (nominal diameter: 76.2 mm), DN 262 (nominal diameter: 254 mm), DN 400 (nominal diameter: 406 mm) were numerically investigated under different valve opening percentages. Representative two-equation turbulence models of two-equation k-epsilon model of Launder and Sharma, two-equation k-omega model of Wilcox, and two-equation k-omega SST model of Menter were selected. Flow characteristics of butterfly valves were examined to determine turbulence model effects. It was determined that increasing turbulence effect could cause many discrepancies between turbulence models, especially in areas with large pressure drop and velocity increase. In addition, sensitivity analysis of flow properties was conducted to determine the effect of constants used in each turbulence model. It was observed that the most sensitive flow properties were turbulence dissipation rate (Epsilon) for the k-epsilon turbulence model and turbulence specific dissipation rate (Omega) for the k-omega turbulence model.


2021 ◽  
Author(s):  
Mohsen. Hedayati-dezfooli

In the present study, the behavior of various sizes of black powder particulates, carried by a turbulent flow of natural gas, is numerically predicated in a horizontal pipeline. The particles are magnetite and are considered as discrete or a dispersed phase; however, the gas phase is considered as a continuous phase. The numerical approach taken to simulate the dispersed phase is a Lagrangian approach, which is essentially computation of particles trajectories. The turbulence effect on the dispersion of the particles, due to turbulent eddies in the gas phase, is predicted using a stochastic discrete-particle approach. Several case studies have been examined and they include: instantaneous injection of diverse particle sizes, continuous injection of five different particle sizes and multiple injection. For the case with instantaneous injection, it has been found that sudden injection of relatively high mass loading of particles would alter the flow profile in the core region and subsequently increases the turbulent intensity. For all cases it has been found that most particles in the core region of the flow move faster than the gas. Also, for all studied cases, the velocity profiles of gas and particles, at different pipeline stations, have been presented and analyzed.


2021 ◽  
Author(s):  
Mohsen. Hedayati-dezfooli

In the present study, the behavior of various sizes of black powder particulates, carried by a turbulent flow of natural gas, is numerically predicated in a horizontal pipeline. The particles are magnetite and are considered as discrete or a dispersed phase; however, the gas phase is considered as a continuous phase. The numerical approach taken to simulate the dispersed phase is a Lagrangian approach, which is essentially computation of particles trajectories. The turbulence effect on the dispersion of the particles, due to turbulent eddies in the gas phase, is predicted using a stochastic discrete-particle approach. Several case studies have been examined and they include: instantaneous injection of diverse particle sizes, continuous injection of five different particle sizes and multiple injection. For the case with instantaneous injection, it has been found that sudden injection of relatively high mass loading of particles would alter the flow profile in the core region and subsequently increases the turbulent intensity. For all cases it has been found that most particles in the core region of the flow move faster than the gas. Also, for all studied cases, the velocity profiles of gas and particles, at different pipeline stations, have been presented and analyzed.


2021 ◽  
Vol 45 (2) ◽  
pp. 93-103
Author(s):  
Abdelhakim Boursas ◽  
Mohamed Salmi ◽  
Giulio Lorenzini ◽  
Hijaz Ahmad ◽  
Younes Menni ◽  
...  

The subject of the study is mainly based on thermal reinforcement by an oily fluid containing nanometer particles of carbon. The study is carried out by the presence of discontinuous bars in two different shapes, i.e. flat and V, inside a horizontal heat exchanger. The study relies on simulations in thermal and dynamic terms from the literature. The turbulence effect is diagnosed by applying the k-ε model, while the flow hydrothermal transport relationships are modeled based on the finite volume technique. Both the flow and heat-transfer aspects of all channel regions are studied and analyzed. The new heat-exchanger structure has been enhanced in the presence of these discontinuous bars by reducing the friction coefficient and eliminating stations with poor transfer of heat behind these deflectors.


2021 ◽  
pp. 002029402110108
Author(s):  
Jie Hong ◽  
Kai Wei ◽  
Shunquan Qin

Sudden flooding is one of the major risks for the drainage sinking construction of deep-water caisson. The damage of inner walls due to hydraulic pressure induced by sudden flooding threatens the labor and structural safety. This study developed the numerical model and analytical method to assess the hydraulic pressure on the inner walls of both the balanced and sudden-sinking caisson under sudden flooding risk. An experimental program of sudden flooding into a caisson specimen was conducted in a water basin to validate the numerical model and the analytical method for balanced caisson. The numerical and analytical methods were then illustrated by an actual engineering practice to show the hydraulic pressure on the inner walls for the caisson under balanced and sudden-sinking state, respectively. The experimental validation and engineering illustration prove that the numerical model is effective in the assessment of hydraulic pressure of caisson under sudden flooding, especially for the complicated case that includes the turbulence effect and sudden sinking, while the analytical method can calculate the quasi-static value of the hydraulic pressure more efficiently. The presented methods provide the engineers with alternative tools to learn more about the sudden flooding risk of the deep-water caisson.


Sign in / Sign up

Export Citation Format

Share Document