deceleration phase
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
M. Koussour ◽  
M. Bennai

In this paper, we present a spatially homogeneous and anisotropic Bianchi type-I cosmological model with a viscous bulk fluid in [Formula: see text] gravity where [Formula: see text] and [Formula: see text] are the Ricci scalar and trace of the energy-momentum tensor, respectively. The field equations are solved explicitly using the hybrid law of the scale factor, which is related to the average Hubble parameter and gives a time-varying deceleration parameter (DP). We found the deceleration parameter describing two phases in the universe, the early deceleration phase [Formula: see text] and the current acceleration phase [Formula: see text]. We have calculated some physical and geometric properties and their graphs, whether in terms of time or redshift. Note that for our model, the bulk viscous pressure [Formula: see text] is negative and the energy density [Formula: see text] is positive. The energy conditions and the [Formula: see text] analysis for our spatially homogeneous and anisotropic Bianchi type-I model are also discussed.


Author(s):  
P. Thakur

A modified and generalised Chaplygin gas (MCG, [Formula: see text] and GCG, [Formula: see text]) has been separately chosen here as a constituent of the universe. Concept of state finder and Om diagnostics are introduced to track the dark energy in the models. Here, observed Hubble data (OHD) and binned Pantheon data of supernovae are used to determine the best-fit equation-of-state (EoS) parameters of these models and these are compared with the [Formula: see text]CDM model. The best-fit value and expected values of cosmological jerk parameter [Formula: see text], snap parameter [Formula: see text] are determined, which are close to each other. A plot of [Formula: see text] with red-shift, with themselves, as well as with deceleration parameter [Formula: see text], shows the evolution of the universe and its possible future. Variations of [Formula: see text] and EoS parameter [Formula: see text] with red-shift show acceleration–deceleration phase transition in the recent past. Lastly, the state finder pair [Formula: see text] and Om diagnostic have been utilized to discriminate the models.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Giuseppina Esposito ◽  
Nicolò Pini ◽  
Salvatore Tagliaferri ◽  
Marta Campanile ◽  
Fulvio Zullo ◽  
...  

Abstract Background The clinical diagnosis of late Fetal Growth Restriction (FGR) involves the integration of Doppler ultrasound data and Fetal Heart Rate (FHR) monitoring through computer assisted computerized cardiotocography (cCTG). The aim of the study was to evaluate the diagnostic power of combined Doppler and cCTG parameters by contrasting late FGR –and healthy controls. Methods The study was conducted from January 2018 to May 2020. Only pregnant women who had the last Doppler measurement obtained within 1 week before delivery and cCTG performed within 24 h before delivery were included in the study. Two hundred forty-nine pregnant women fulfilling the inclusion criteria were enrolled in the study; 95 were confirmed as late FGR and 154 were included in the control group. Results Among the extracted cCTG parameters, Delta Index, Short Term Variability (STV), Long Term Variability (LTV), Acceleration and Deceleration Phase Rectified Slope (APRS, DPRS) values were lower in the late FGR participants compared to the control group. In the FGR cohort, Delta, STV, APRS, and DPRS were found different when stratifying by MCA_PI (MCA_PI <5th centile or > 5th centile). STV and DPRS were the only parameters to be found different when stratifying by (UA_PI >95th centile or UA_PI <95th centile). Additionally, we measured the predictive power of cCTG parameters toward the identification of associated Doppler measures using figures of merit extracted from ROC curves. The AUC of ROC curves were accurate for STV (0,70), Delta (0,68), APRS (0,65) and DPRS (0,71) when UA_PI values were > 95th centile while, the accuracy attributable to the prediction of MCA_PI was 0.76, 0.77, 0.73, and 0.76 for STV, Delta, APRS, and DPRS, respectively. An association of UA_PI>95th centile and MCA_PI<5th centile with higher risk for NICU admission, was observed, while CPR < 5th centile resulted not associated with any perinatal outcome. Values of STV, Delta, APRS, DPRS were significantly lower for FGR neonates admitted to NICU, compared with the uncomplicated FGR cohort. Conclusions The results of this study show the contribution of advanced cCTG parameters and fetal Doppler to the identification of late FGR and the association of those parameters with the risk for NICU admission. Trial registration Retrospectively registered.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kang Niu ◽  
Jianqiao Yu ◽  
Xi Chen ◽  
Di Yang ◽  
Ziyuan Li

A new process of agile turn with engine reignition is proposed in this paper. Compared with the traditional process, this process includes deceleration phase, larger angle manoeuvre phase, and engine reignition phase. Firstly, the paper describes the new process of agile turn. Then, several constraints in this process are described. Considering all these constraints and assumptions, a new dynamic model including two-stage engine and deceleration parachute is established. Then, the optimal control laws are designed and the timing point determination of the secondary engine ignition is discussed. By using Pontryagin principle, the optimal control laws for each actuator are derived. In terms of determining the optimal timing point of the secondary engine ignition, the paper gives the process of proof. Finally, several numerical simulations are given to demonstrate the effectiveness of the method proposed in this paper. According to all these numerical simulations, it is obvious that the new process of agile turn proposed in this paper is better than traditional process especially in having a smaller turning radius, a shorter turning time, and a high terminal velocity.


2021 ◽  
Author(s):  
Yuqi Liu ◽  
James Caracoglia ◽  
Sriparna Sen ◽  
Ella Striem-Amit

While reaching and grasping are highly prevalent manual actions, neuroimaging studies provide evidence that their neural representations may be shared between different body parts, i.e. effectors. If these actions are guided by effector-independent mechanisms, similar kinematics should be observed when the action is performed by the hand or by a cortically remote and less experienced effector, such as the foot. We tested this hypothesis with two characteristic components of action: the initial ballistic stage of reaching, and the preshaping of the digits during grasping based on object size. We examined if these kinematic features reflect effector-independent mechanisms by asking participants to reach toward and to grasp objects of different widths with their hand and foot. First, during both reaching and grasping, the velocity profile up to peak velocity matched between the hand and the foot, indicating a shared ballistic acceleration phase. Secondly, maximum grip aperture and time of maximum grip aperture of grasping increased with object size for both effectors, indicating encoding of object size during transport. Differences between the hand and foot were found in the deceleration phase and time of maximum grip aperture, likely due to biomechanical differences and the participants' inexperience with foot actions. These findings provide evidence for effector-independent visuomotor mechanisms of reaching and grasping that generalize across body parts.


Author(s):  
Chi Zhu ◽  
Jung-Hee Seo ◽  
Rajat Mittal

Abstract In this study, a novel reduced degree-of-freedom (rDOF) aortic valve model is employed to investigate the fluid-structure interaction and hemodynamics associated with aortic stenosis. The dynamics of the valve leaflets are determined by an ordinary differential equation with two parameters and this rDOF model is shown to reproduce key features of more complex valve models. The hemodynamics associated with aortic stenosis is studied for three cases: a healthy case and two stenosed cases. The focus of the study is to correlate the hemodynamic features with the source generation mechanism of systolic murmurs associated with aortic stenosis. In the healthy case, extremely weak flow fluctuations are observed. However, in the stenosed cases, simulations show significant turbulent fluctuations in the asending aorta, which are responsible for the generation of strong wall pressure fluctuations after the aortic root mostly during the deceleration phase of the systole. The intensity of the murmur generation increases with the severity of the stenosis, and the source locations for the two diseased cases studied here lies around 1.0 inlet duct diameters ($D_o$) downstream of the ascending aorta.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6576
Author(s):  
Yan-Ying Ju ◽  
Wan-Ting Chu ◽  
Wann-Yun Shieh ◽  
Hsin-Yi Kathy Cheng

This study was the first to compare the differences in trunk/shoulder kinematics and impact vibration of the upper extremity during backhand strokes in wheelchair tennis players and the able-bodied players relative to standing and sitting positions, adopting an electromagnetic system along with wearable tri-axial accelerometers upon target body segments. A total of 15 wheelchair tennis players and 15 able-bodied tennis players enrolled. Compared to players in standing positions, wheelchair players demonstrated significant larger forward trunk rotation in the pre-preparation, acceleration, and deceleration phase. Significant higher trunk angular velocity/acceleration and shoulder flexion/internal rotation angular velocity/acceleration were also found. When able-bodied players changed from standing to sitting positions, significant changes were observed in the degree of forward rotation of the trunk and shoulder external rotation. These indicated that when the functions of the lower limbs and trunk are lacking or cannot be used effectively, “biomechanical solutions” such as considerable reinforcing movements need to be made before the hitting movement. The differences between wheelchair tennis players and able-bodied players in sitting positions could represent the progress made as the wheelchair players evolve from novices to experts. Knowledge about how sport biomechanics change regarding specific disabilities can facilitate safe and inclusive participation in disability sports such as wheelchair tennis.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e049680
Author(s):  
Tom Roberts ◽  
Jo Daniels ◽  
William Hulme ◽  
Robert Hirst ◽  
Daniel Horner ◽  
...  

ObjectivesThe psychological impact of the COVID-19 pandemic on doctors is a significant concern. Due to the emergence of multiple pandemic waves, longitudinal data on the impact of COVID-19 are vital to ensure an adequate psychological care response. The primary aim was to assess the prevalence and degree of psychological distress and trauma in frontline doctors during the acceleration, peak and deceleration of the COVID-19 first wave. Personal and professional factors associated with psychological distress are also reported.DesignA prospective online three-part longitudinal survey.SettingAcute hospitals in the UK and Ireland.ParticipantsFrontline doctors working in emergency medicine, anaesthetics and intensive care medicine during the first wave of the COVID-19 pandemic in March 2020.Primary outcome measuresPsychological distress and trauma measured using the General Health Questionnaire-12 and the Impact of Events-Revised.ResultsThe initial acceleration survey distributed across networks generated a sample of 5440 doctors. Peak and deceleration response rates from the original sample were 71.6% (n=3896) and 56.6% (n=3079), respectively. Prevalence of psychological distress was 44.7% (n=1334) during the acceleration, 36.9% (n=1098) at peak and 31.5% (n=918) at the deceleration phase. The prevalence of trauma was 23.7% (n=647) at peak and 17.7% (n=484) at deceleration. The prevalence of probable post-traumatic stress disorder was 12.6% (n=343) at peak and 10.1% (n=276) at deceleration. Worry of family infection due to clinical work was the factor most strongly associated with both distress (R2=0.06) and trauma (R2=0.10).ConclusionFindings reflect a pattern of elevated distress at acceleration and peak, with some natural recovery. It is essential that policymakers seek to prevent future adverse effects through (a) provision of vital equipment to mitigate physical and psychological harm, (b) increased awareness and recognition of signs of psychological distress and (c) the development of clear pathways to effective psychological care.Trial registration numberISRCTN10666798.


Author(s):  
Partha Sarathi Debnath ◽  
Bikash Chandra Paul

In this paper, evolution of a Friedmann–Robertson–Walker universe is studied in a higher derivative theory of gravity. The relativistic solutions admitting hybrid expansion law of the universe are explored here. Hybrid expansion law is a general form of scale factor from which one can recover both the power-law expansion and exponential expansion as a special case. The hybrid expansion law is interesting as it addresses the early deceleration phase and presents accelerating phase satisfactorily. It is found that an inflationary scenario with hybrid expansion law is permitted in the [Formula: see text] gravity fairly well. We consider universe filled with cosmic fluid that describes by an equation of state (EoS) parameter which varies with time. Consequently, we analyze the time variation of energy density parameter, cosmic pressure, equation of state parameter, deceleration parameter and jerk parameter in the cosmological model. The constraints of the model parameters imposed by the cosmological observational data set are determined. The present value of the deceleration parameter [Formula: see text], EoS parameter and the epoch at which the transition of decelerated phase to accelerated phase are estimated. In the higher derivative theory, we obtain some new and interesting cosmological solutions relevant for building cosmological models.


Sign in / Sign up

Export Citation Format

Share Document