Predicting Speed of Crack Running in Functionally Graded Material

Author(s):  
Michihiko Nakagaki ◽  
Ryosuke Matsumoto

A theoretical and computational methodology for the analysis of the functionally graded material (FGM) is introduced, and its application is made to the problem of a dynamically propagating crack running transversely in the FGM, where the intensity of the estimated crack-tip severity is managed to keep in valance with the graded material toughness in the FGM during the propagation. To detect the crack-tip severity, an integral fracture parameter, T*, is used. The crack is propagated so that the value of T* is equated to the prescribed varying critical values of T* for the graded material. Emphasis is placed on the use of a fuzzy inference technique in order to control the crack speed, which is deduced from a few T* values immediately preceding the current crack position. As to describing the constitutive law for the FGM, micro-spherical particles of arbitrary size in mesoscale are considered to be randomly dispersed in the matrix medium. By assuming that the volume fraction of the inclusion is continuously varied from 0 to 100 percent in the material, the grading is modeled. For modeling the constitutive law for the FGM composite media of thermo-elastoplasticity, a closed form SCC-LRM constitutive model describing the nonlinear material mechanics of the particle-dispersed medium is used. The model is based on the self-consistent scheme and uses Eshelby’s equivalent inclusion method. Unprecedented analytical results of predicting the crack speed of a crack running transversely in the FGM plate are obtained. In some cases of material grading, apparent crack arresting is observed as the crack runs into the metal rich area of the FGM.

2010 ◽  
Vol 78 (1) ◽  
Author(s):  
Linhui Zhang ◽  
Jeong-Ho Kim

This paper provides full asymptotic crack-tip field solutions for an antiplane (mode-III) stationary crack in a functionally graded material. We use the complex variable approach and an asymptotic scaling factor to provide an efficient procedure for solving standard and perturbed Laplace equations associated with antiplane fracture in a graded material. We present the out-of-plane displacement and the shear stress solutions for a crack in exponentially and linearly graded materials by considering the gradation of the shear modulus either parallel or perpendicular to the crack. We discuss the characteristics of the asymptotic solutions for a graded material in comparison with the homogeneous solutions. We address the effects of the mode-III stress intensity factor and the antiplane T-stress onto crack-tip field solutions. Finally, engineering significance of the present work is discussed.


2003 ◽  
Vol 423-425 ◽  
pp. 629-634 ◽  
Author(s):  
Michihiko Nakagaki ◽  
Hua Jian Chang ◽  
Kenichi Yamazaki

2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Linhui Zhang ◽  
Jeong-Ho Kim

This paper provides asymptotic full crack-tip stress field solutions for an in-plane mixed-mode stationary crack in an anisotropic functionally graded material. A monoclinic graded material that has a material symmetry plane is considered. The complex variable approach and the asymptotic scaling factor are used to solve the governing fourth-order partial differential equation for exponentially graded anisotropic materials with gradation either parallel or perpendicular to the crack. Full crack-tip stress fields under mode-I and mode-II loading are visualized and discussed for homogeneous and exponentially graded anisotropic materials. We observe that higher-order terms are affected by material gradation and play an important role on crack-tip stress fields in functionally graded materials.


2015 ◽  
Vol 65 (1) ◽  
pp. 57-76
Author(s):  
M. Repka ◽  
J. Sládek ◽  
V. Sládek ◽  
M. Wünsche

Abstract The finite element method (FEM) is developed for coupled thermoelastic crack problems if material properties are continuously varying. The weak form is utilized to derive the FEM equations. In conventional fracture theories the state of stress and strain at the crack tip vicinity is characterized by a single fracture parameter, namely the stress intensity factor or its equivalent, J-integral. In the present paper it is considered also the second fracture parameter called as the T-stress. For evaluation of both fracture parameters the quarter-point crack tip element is developed. Simple formulas for both fracture parameters are derived comparing the variation of displacements in the quarter-point element with asymptotic expression of displacement at the crack tip vicinity. The leading terms of the asymptotic expansions of fields in the crack-tip vicinity in a functionally graded material (FGM) are the same as in a homogeneous one with material coefficients taken at the crack tip.


Sign in / Sign up

Export Citation Format

Share Document