A Finite element approach for the static and vibration analyses of Functionally Graded Material viscoelastic sandwich beams with nonlinear material behavior

2021 ◽  
pp. 114315
Author(s):  
Kouami Koutoati ◽  
Foudil Mohri ◽  
El Mostafa Daya ◽  
Erasmo Carrera
Author(s):  
Michihiko Nakagaki ◽  
Ryosuke Matsumoto

A theoretical and computational methodology for the analysis of the functionally graded material (FGM) is introduced, and its application is made to the problem of a dynamically propagating crack running transversely in the FGM, where the intensity of the estimated crack-tip severity is managed to keep in valance with the graded material toughness in the FGM during the propagation. To detect the crack-tip severity, an integral fracture parameter, T*, is used. The crack is propagated so that the value of T* is equated to the prescribed varying critical values of T* for the graded material. Emphasis is placed on the use of a fuzzy inference technique in order to control the crack speed, which is deduced from a few T* values immediately preceding the current crack position. As to describing the constitutive law for the FGM, micro-spherical particles of arbitrary size in mesoscale are considered to be randomly dispersed in the matrix medium. By assuming that the volume fraction of the inclusion is continuously varied from 0 to 100 percent in the material, the grading is modeled. For modeling the constitutive law for the FGM composite media of thermo-elastoplasticity, a closed form SCC-LRM constitutive model describing the nonlinear material mechanics of the particle-dispersed medium is used. The model is based on the self-consistent scheme and uses Eshelby’s equivalent inclusion method. Unprecedented analytical results of predicting the crack speed of a crack running transversely in the FGM plate are obtained. In some cases of material grading, apparent crack arresting is observed as the crack runs into the metal rich area of the FGM.


2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.


Sign in / Sign up

Export Citation Format

Share Document