Technological Advances for Improved Performance and Operation of Fiber-Reinforced Polymer Piping

Author(s):  
Pierre Mertiny ◽  
Mohammad Bashar ◽  
Avinash Parashar ◽  
Kulvinder Juss

Fiber-reinforced polymer (FRP) piping has been recognized for excellent corrosion resistance and high specific properties such as its strength-to-weight ratio. Despite the positive characteristics, FRP piping has limited, albeit growing utilization in industrial service. This is in part due to initial cost when compared to conventional metallic pipe. Reduced life cycle expenditures in conjunction with operational advantages may foster an increased implementation of FRP piping. This may be achieved through installation procedures, longevity and operational capabilities that are superior to those related to metallic piping. The present article reviews recent technological advances relating to these attributes, namely improved joining methods; enhanced wear, corrosion and damage resistance; and embedded monitoring systems for wear and other parameters.

2013 ◽  
Vol 339 ◽  
pp. 687-690 ◽  
Author(s):  
Jian Shi ◽  
Jun Kato ◽  
Li Min Bao ◽  
Kiyoshi Kemmochi

Fiber Reinforced Polymer (FRP) composites are used in many applications for their excellent strength-to-weight ratio. These properties are significant barriers for achieving the 3R concept (Recycle, Reuse, and Reduce). Inverse manufacturing is a recent technology that produces new materials and industrial goods from FRP waste based on life-cycle assessment (LCA), and it is expected to help solve the problems of 3R associated with FRP [1-. However, no effective recycling system of FRP has been established because of the cross-linked structure of thermosetting resin matrix and inorganic reinforcement fibers. To investigate the possibility of recycling and reusing both matrix and reinforcements, a project of preventing environmental deterioration was performed. In this study, a new decomposition method for recycling FRP waste by superheated steam was developed. Separation of the resin matrix and reinforcement fiber from the FRP was attempted, the FRP recycled from the separated fibers was remolded; this is called R-FRP.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 92 ◽  
Author(s):  
Marta Martins ◽  
Rui Gomes ◽  
Luís Pina ◽  
Celeste Pereira ◽  
Olaf Reichmann ◽  
...  

One of the main advantages of carbon fiber-reinforced polymer (CFRP) electronic housings, when compared with traditionally used aluminum ones, is the potential for mass savings. In recent years, the power consumption of electronics has been growing, resulting in the need for higher thermal dissipation of electronic housings, requiring the use of highly thermally conductive materials. In this work, the manufacturing of a highly conductive CFRP electronic housing is reported. With a view to reducing total energy costs on manufacturing, an out-of-the autoclave manufacturing process was followed. Due to the inherent low thermal conductivity of typical raw materials for composite materials, strategies were evaluated to increase its value by changing the components used. The use of pitch-based carbon fibers was found to be a very promising solution. In addition, structural, thermal and manufacturing simulations were produced in the design phase. Improved performance was demonstrated from materials manufacturing to final breadboard testing. The results indicate potential gains of around 23% in mass reduction when compared to conventional aluminum electronic boxes. Moreover, the proposed design and the manufactured breadboard showed good compliance with mechanical and electrical requirements for spacecraft structures. The thermal balance results showed a performance slightly below to what would be expected from the detailed design.


2010 ◽  
Vol 168-170 ◽  
pp. 1353-1362 ◽  
Author(s):  
Xiu Li Du ◽  
Zuo Hu Wang ◽  
Jing Bo Liu

Fiber reinforced polymer (FRP), particularly those incorporating carbon fiber (CFRP), has high strength, high stiffness-to-weight ratio and high resistance to corrosion, which shows potential for use as prestressing tendons in corrosive environment. However, concrete beams prestressed with FRP tendons have showed brittle flexural failure due to the elastic rupture of FRP tendons. In order to improve the ductility, a combination of bonded and/or unbonded prestressing tendons was used. Nine prestressed concrete beams were tested up to failure to study the effect of bonded and unbonded FRP tendons on their flexural capacity. Three factors were taken into consideration; the bonding condition of CFRP tendons, the location of CFRP tendons and the prestressing ratio. Also an analytical investigation was carried out to extend some flexural capacity calculation equations to this beam type. The results of the experimental showed that under the same condition, the carrying capacity of concrete beam prestressed with bonded FRP tendons was 20% higher than that of internal unbonded prestressed beam, and was 40% higher than that of external unbonded prestressed beam without deviators. By combination of bonded and unbonded FRP tendons, the ductility of prestressed concrete beams can be improved.


2004 ◽  
Vol 31 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Burong Zhang ◽  
Brahim Benmokrane

Corrosion resistance, high strength, and advantageous strength-to-weight ratio enable fiber reinforced polymers (FRPs) to have substantial potential to replace steel tendons in prestressed applications. One of the main technical obstacles to wide use of FRPs in the construction industry is the methodology to anchor FRP tendons to achieve their full strength. High tensile to compression and shear strength ratios make it necessary to develop a new anchorage design concept for FRP tendons. This paper gives a literature review of bond-type anchorage systems and the mechanics of stress transfer by bond from FRP tendons to grout and reports an experimental study on a newly developed bond-type anchorage system with carbon fiber reinforced polymer (CFRP) Leadline 8-mm-diameter rods. The test program consisted of nine monotonic tensile tests, two pullout tests, and two proving tests on the anchorage system with Leadline single- or 9-rod tendons. The test results showed that the developed anchorage system with 250-mm bond length ensures full development of the tensile strength of Leadline mono-rod tendons. The bond strength of Leadline 9-rod tendons is 14 MPa for a bond length of 95 mm, 62% of that of mono-rod ones with a bond length of 80 mm. The anchorage system with a 400-mm bond length gives at least 90% of the tensile strength of Leadline 9-rod tendons and also demonstrates an acceptable sustained loading behaviour in accordance with existing codes.Key words: anchorage, bond stress, creep, grout, polymers, rod, slip, tendon.


Sign in / Sign up

Export Citation Format

Share Document