carbon fiber reinforced polymer
Recently Published Documents


TOTAL DOCUMENTS

1420
(FIVE YEARS 575)

H-INDEX

46
(FIVE YEARS 11)

Author(s):  
D.G. Puttaraju D G

In this century, composites have been discovered to be the most promising and discriminating material accessible. Composites reinforced with synthetic or natural fibres are becoming more popular as demand for light weight, high strength materials for specialized applications grows are on the rise in the market. In the current work Carbon fiber Reinforced Polymer Matrix Composite material is developed aiming wind turbine blade applications. This research demonstrates the successful development of a carbon fibre reinforced Epoxy matrix composite that can be utilized to make micro wind turbine blades and is very cost effective thanks to the utilization of a simple hand lay-up approach. The peak elongation varies from 12.248 mm to 14.417 mm, and the tensile strength varies from 939.472 N/mm2 to 960.910 N/mm2. It was observed that the Compressive Strength varies from 8.992 N/mm2 to 46.895 N/ mm2 and peak elongation varies from 1.808 mm to 3.462 mm. In three-point bending test, the peak load was found to be 509.96 N. Due to the presence of carbon fibre reinforcement, the bending strength of polyester resin has been greatly increased.


2022 ◽  
pp. 136943322110572
Author(s):  
Shao Lian ◽  
Ou Jinping ◽  
Zhou Zhi

Carbon fiber–reinforced polymer (CFRP) rods have been considered as a candidate material for prestressed concrete applications because of their superior properties. For current applications, successful use of CFRP rods is linked to an efficient anchorage system design. This paper presents a newly developed anchorage system for CFRP rods and the design concept that the extrusion process is used to generate gripping force. The proposed anchorage system consists of a steel barrel and an aluminum sleeve, and an extrusion region is designed on the outside of barrel to generate a suitable contact pressure distribution on the CFRP rod. A mathematical model was proposed to estimate the contact pressure on the CFRP rod and the capacity of anchorage system. The simulation of extrusion and loading process was conducted with a three-dimensional (3D) finite-element (FE) model. The key design parameters of anchorage system were analyzed to obtain an optimized parameter combination. The experimental validation showed that the new anchorage system is capable of allowing the CFRP rod to attain the ultimate tensile strength.


2022 ◽  
Author(s):  
Shuaipu Wang ◽  
Jie Liang

Abstract In order to reduce the delamination damage of carbon fiber reinforced polymer (CFRP) drilling and improve the drilling quality. A variable feed drilling method based on sinusoidal curve was proposed, that is, when the drill at a distance of 1mm from the hole exit, the feed rate of the drill would be reduced according to the rule of sinusoidal curve. The method is compared with the traditional feed drilling by experiment, and the influence of the variable feed drilling on thrust force, delamination factor, surface quality, surface roughness of hole wall and exit hole wall morphology are analyzed. The results show that compared with constant-feed drilling, the variable-feed drilling based on sinusoidal curve reduces the thrust force near the hole exit, and greatly improves the delamination factor, surface quality and hole wall morphology at the exit. But the influence on the hole wall roughness is not particularly obvious.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Christine Lozano ◽  
Maggie Langston ◽  
Mohammad H. Kashefizadeh ◽  
Gary S. Prinz

Lock gates are an important part of the transportation infrastructure within the United States (US). Unfortunately, many existing lock gates have reached or exceeded their initial design lives and require frequent repairs to remain in service. Unscheduled repairs often increase as gates age, having a local economic impact on freight transport, which can create economic ripples throughout the nation. Metal fatigue is a key cause of unscheduled service interruptions, degrading lock gate components over time. Additionally, because lock gates are submerged during operation, crack detection prior to component failure can be difficult, and repair costs can be high. This paper presents an analytical and experimental investigation into fatigue damage within common lock gate geometries, as well as fatigue mitigation strategies with a focus on extending gate service lives. Detailed finite element analyses are combined with fatigue and fracture mechanics theories to predict critical fatigue regions within common gate details and develop retrofit strategies for mitigating fatigue cracking. Full-scale experimental fatigue testing of a critical lock gate component is conducted to provide a baseline for the evaluation of retrofit strategies. Retrofit strategies and issues in using carbon fiber reinforced polymer (CFRP) plates having optimized pre-stress levels are discussed.


Sign in / Sign up

Export Citation Format

Share Document