Experimental Investigation on the Limit Load Estimation Method for Pipes Containing a Circumferential Surface Flaw With Complicated Shape

Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a flaw is detected in the stainless steel pipes at nuclear power plants during in-service inspections, the limit load estimation method provided in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the flawed pipe. However, in these current codes, the limit load estimation method is only derived for pipes containing a flaw with uniform depth, although many flaws with complicated shapes, such as stress corrosion cracks, have actually been detected in pipes. In order to evaluate the integrity of the flawed pipes in a more rational way, a limit load estimation method has been proposed by authors considering the complicated circumferential surface flaw in its shape. In this study, failure bending experiments are performed for stainless steel pipes containing a circumferential surface flaw with a complicated asymmetrical shape. The proposed method is verified by comparing with experimental results of failure bending moments obtained in this study and in previous experiments. It is observed that the predicted failure bending moments by the proposed method are consistent with the experimental results, and the proposed method is applicable to estimate the realistic load-carrying capacity of flawed pipes.

Author(s):  
Chihiro Narazaki ◽  
Toshiyuki Saito ◽  
Masao Itatani ◽  
Takuya Ogawa ◽  
Takao Sasayama

Stress corrosion cracking (SCC) has been observed as circumferential multiple flaws in the weld heat-affected zone of primary loop recirculation system piping and core shrouds made of low carbon stainless steel. In the Japan Society of Mechanical Engineers code, Rules on Fitness-for-Service for Nuclear Power Plants, there is no fracture assessment of piping with multiple flaws which are not subject to flaw combination rule criteria. Through fracture testing of piping with two circumferential flaws in the weld heat-affected zone, the limit load estimation method was used for fracture assessment of stainless steel piping.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Kunio Onizawa ◽  
Nathaniel G. Cofie

When a flaw is detected in a stainless steel piping system of a nuclear power plant during in-service inspection, the limit load estimation method provided in codes such as ASME Section XI or JSME S NA-1-2008 can be applied to evaluate the integrity of the pipe. However, in the current editions of these codes, a limit load estimation method is only provided for pipes containing a single flaw. Independent multiple flaws, such as stress corrosion cracks, have actually been detected in the same plane of stainless steel piping systems. In this paper, a failure estimation method by formula is proposed for any number and arbitrary distribution of multiple independent circumferential flaws in the same plane of a pipe. Using the proposed method, numerical solutions are compared with experimental results to validate the model, and several numerical examples are provided to show its effectiveness.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a crack is detected in a stainless steel pipe during in-service inspections, the failure estimation method given in the codes such as ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the integrity of the cracked pipe. In the current codes, the failure estimation method considers the bending moment and axial force due to pressure. The torsion moment is assumed to be relatively small and is not considered in the method. Recently, an analytical investigation has been carried out by several of our authors on the limit load considering multi-axial loads including torsion, and a failure estimation method for combined bending moment, torsion moment and internal pressure is proposed. In this study, to investigate the failure behavior of cracked pipes subjected to multi-axial loads, including the torsion, and to provide experimental support for the failure estimation method, experiments were carried out on small sized stainless steel cylinders containing a circumferential surface and a through-wall crack, taking into consideration the combined tensile and torsion loads. Based on the experimental results, the proposed failure estimation method is verified for cracked pipes subjected to multi-axial loads.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Michiya Sakai ◽  
Shinichi Matsuura ◽  
Naoki Miura

When a crack is detected in a nuclear piping system during in-service inspections, failure estimation method provided in codes such as ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method for circumferentially cracked pipes is applicable for both bending moment and axial force due to pressure. Torsion moment is not considered. Recently, two failure estimation methods for circumferentially cracked pipes subjected to combined bending and torsion moments were proposed based on analytical investigations on the limit load for cracked pipes. In this study, experimental investigation was conducted to confirm the applicability of the failure estimation method for cracked pipes subjected to bending and torsion moments. Experiments were carried out on 8-in. diameter Schedule 80 stainless steel pipes containing a circumferential surface crack. Based on the experimental results, the proposed failure estimation methods were confirmed to be applicable to cracked pipes subjected to combined bending and torsion moments.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Michiya Sakai ◽  
Shinichi Matsuura ◽  
Naoki Miura

When a crack is detected in a nuclear piping system during in-service inspections, the failure estimation method provided in codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method for circumferentially cracked pipes includes bending moment and axial force due to pressure. Torsion moment is not considered. The Working Group on Pipe Flaw Evaluation for the ASME Boiler and Pressure Vessel Code Section XI is developing guidance for combining torsion load within the existing solutions provided in Appendix C for bending and pressure loadings on a pipe. A failure estimation method for circumferentially cracked pipes subjected to general loading conditions including bending moment, internal pressure and torsion moment with general magnitude has been proposed based on analytical investigations on the limit load for cracked pipes. In this study, experimental investigation was conducted to confirm the applicability of the proposed failure estimation method. Experiments were carried out on 8-inch diameter Schedule 80 stainless steel pipes containing a circumferential surface crack. Based on the experimental results, the proposed failure estimation method was confirmed to be applicable to cracked pipes subjected to combined bending and torsion moments.


Author(s):  
Fuminori Iwamatsu ◽  
Katsumasa Miyazaki ◽  
Koichi Saito ◽  
Kunio Hasegawa

Fully plastic failure stress for a single circumferential flaw on a pipe is evaluated by the limit load criteria in accordance with Appendix E-8 in the JSME S NA-1-2004 and Appendix C in the ASME Code Section XI. However, multiple flaws such as stress corrosion cracking are frequently detected in the same circumferential cross section in a pipe. Hasegawa had proposed failure stress for pipes with two and three circumferential flaws based on net-stress approach. Authors performed four-point bending tests on stainless steel pipes with two symmetrical circumferential flaws in a past study. It was concluded that the experimental results were in good agreement with the theoretical results. In this study, we performed quasi-static four-point bending tests on stainless steel pipes with three symmetrical circumferential flaws. Each experiment resulted in different fracture behavior. We compared the experimental results with the proposed theoretical method.


2009 ◽  
Vol 75 (752) ◽  
pp. 469-475
Author(s):  
Yinsheng LI ◽  
Kunio HASEGAWA ◽  
Kunio ONIZAWA ◽  
Hideharu SUGINO

Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a crack is detected in a stainless steel pipe during in-service inspections, the failure estimation method given in codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method includes the bending moment and axial force due to pressure. The torsion moment is assumed to be relatively small and is not considered. Recently, analytical investigations considering multi-axial loads including torsion were conducted in several previous studies by examining the limit load for pipes with a circumferential crack. A failure estimation method for the combined bending moment, torsion moment and internal pressure was proposed. In this study, the failure behavior of pipes with a circumferential crack subjected to multi-axial loads including the torsion is investigated to provide experimental support for the failure estimation method. Experiments were carried out on small size stainless steel cylinders containing a circumferential surface or through-wall crack, subjected to the combined tensile and torsion loads. Based on the experimental results, the proposed failure estimation method was confirmed to be applicable to cracked pipes subjected to combined tensile and torsion loads.


Sign in / Sign up

Export Citation Format

Share Document