A Unified Viscoplastic Model for High Temperature Low Cycle Fatigue of Service-Aged P91 Steel

Author(s):  
R. A. Barrett ◽  
P. E. O’Donoghue ◽  
S. B. Leen

The finite element (FE) implementation of a hyperbolic sine unified cyclic viscoplasticity model is presented. The hyperbolic sine flow rule facilitates the identification of strain-rate independent material parameters for high temperature applications. This is important for the thermo-mechanical fatigue of power plant where a significant stress range is experienced during operational cycles and at stress concentration features, such as welds and branch connections. The material model is successfully applied to the characterisation of the high temperature low cycle fatigue behaviour of a service-aged P91 material, including isotropic (cyclic) softening and non-linear kinematic hardening effects, across a range of temperatures and strain-rates.

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
R. A. Barrett ◽  
T. P. Farragher ◽  
C. J. Hyde ◽  
N. P. O'Dowd ◽  
P. E. O'Donoghue ◽  
...  

The finite element (FE) implementation of a hyperbolic sine unified cyclic viscoplasticity model is presented. The hyperbolic sine flow rule facilitates the identification of strain-rate independent material parameters for high temperature applications. This is important for the thermo-mechanical fatigue of power plants where a significant stress range is experienced during operational cycles and at stress concentration features, such as welds and branched connections. The material model is successfully applied to the characterisation of the high temperature low cycle fatigue behavior of a service-aged P91 material, including isotropic (cyclic) softening and nonlinear kinematic hardening effects, across a range of temperatures and strain-rates.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Richard A. Barrett ◽  
Eimear M. O'Hara ◽  
Padraic E. O'Donoghue ◽  
Sean B. Leen

This paper presents the high-temperature low-cycle fatigue (HTLCF) behavior of a precipitate strengthened 9Cr martensitic steel, MarBN, designed to provide enhanced creep strength and precipitate stability at high temperature. The strain-controlled test program addresses the cyclic effects of strain-rate and strain-range at 600 °C, as well as tensile stress-relaxation response. A recently developed unified cyclic viscoplastic material model is implemented to characterize the complex cyclic and relaxation plasticity response, including cyclic softening and kinematic hardening effects. The measured response is compared to that of P91 steel, a current power plant material, and shows enhanced cyclic strength relative to P91.


2019 ◽  
Vol 287 ◽  
pp. 02002
Author(s):  
Marina Franulovic ◽  
Kristina Markovic ◽  
Zdravko Herceg

Gears are mechanical components which experience high dynamic loading during their exploitation period. Therefore, their load carrying capacity together with life expectancy are often the main research interest in various studies. The research presented in this paper is focused on the materials response in spur gears tooth root, with the attention given to the repeated overloads during gears operation. In order to simulate low cycle fatigue by using numerical modeling of stress - strain relationship within material, the material model which takes into account isotropic and kinematic hardening is used here. Material response of specimens produced out of steel 42CrMo4 in different loading conditions is used for the calibration of material model, which is then applied to simulate damage initiation and materials stress - strain response in gears tooth root. The results show that materials response to the given loading conditions non-linearly change through the loading cycles.


Sign in / Sign up

Export Citation Format

Share Document