Volume 6B: Materials and Fabrication
Latest Publications


TOTAL DOCUMENTS

93
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791855713

Author(s):  
Randy K. Nanstad ◽  
Xiang Chen ◽  
Mikhail A. Sokolov ◽  
Barry H. Rabin ◽  
Ying Yang

A large heat of low-alloy steel that met both specifications for SA508 Grade 3 Class1 forging steel and SA533 Type B Class 1 plate steel (A508/A533) was procured and used to fabricate a submerged-arc weldment for potential application in high temperature gas-cooled reactors. Compact specimens, 1TC(T), were machined from the weld metal and from the heat-affected-zone (HAZ) of the weldment. Tests of both materials were performed to obtain the fracture toughness reference temperature, To, using the Master Curve procedure of ASTM E-1921, and J-R curves to evaluate material behavior at various threshold temperatures in Code Case N-499-2 (2001) of the ASME Boiler and Pressure Vessel Code. Tests were performed at various temperatures up to 593°C. Unloading compliance was the primary technique used, although dc-potential drop was also monitored during the tests, and the normalization procedure of E1820 was used to compare the results from each procedure. Moreover, many tests at the highest temperatures were performed with no unloading and the normalization procedure provided in E1820 was used to analyze the load-displacement measurements. The fracture toughness for the HAZ is superior to that of the weld metal both in terms of transition temperature and ductile fracture toughness.


Author(s):  
Haitao Wang ◽  
Xin Wang

Spherical fuel elements with a diameter of 60mm are basic units of the nuclear fuel for the pebble-bed high temperature gas-cooled reactor (HTR). Each fuel element is treated as a graphite matrix containing around 10,000 randomly distributed fuel particles. The essential safety concept of the pebble-bed HTR is based on the objective that maximum temperature of the fuel particles does not exceed the design value. In this paper, a microstructure-based boundary element model is proposed for the large-scale thermal analysis of a spherical fuel element. This model presents detailed structural information of a large number of coated fuel particles dispersed in a spherical graphite matrix in order that temperature distributions at the level of fuel particles can be evaluated. The model is meshed with boundary elements in conjunction with the fast multipole method (FMM) in order that such large-scale computation is performed only in a personal desktop computer. Taking advantage of the fact that fuel particles are of the same shape, a similar sub-domain approach is used to establish the temperature translation mechanism between various layers of each fuel particle and to simplify the associated boundary element formulation. The numerical results demonstrate large-scale capacity of the proposed method for the multi-level temperature evaluation of the pebble-bed HTR fuel elements.


Author(s):  
Alexander M. Summe ◽  
Douglas P. Munson ◽  
Kenneth Oliphant ◽  
Sarah Chung

Degradation of service water systems is a major issue facing nuclear power plants and many plants will require repair or replacement of existing carbon steel piping components. High-density polyethylene (HDPE) has been used in non-safety service water systems for over ten years and has demonstrated superior performance. However, there still exist knowledge gaps around material properties, inspectability, and long-term performance. Specifically, there is a lack of insight on the aging of HDPE piping in disinfectant treated service water systems. This paper summarizes the methodology and results of predicting the expected life time of HDPE piping exposed to oxidizing biocides in numerous end-use scenarios. The aging mechanism of concern is Stage III Chemical-Mechanical degradation, where the polymer is oxidized by biocides and then experiences slow crack growth (SCG). An Aging Model is used to provide general predictions of pipe service life. The results were analyzed for trends and limiting or sensitive operating parameters were identified. For most applications, the specific resin used in the model demonstrated good performance for lifetimes of well over 40 years.


Author(s):  
Sijia Zhong ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Polyethylene (PE) pipes have been applied in transportation of key energy medium such as natural gas in the past decades. The mechanical property of PE is of great importance for better design and safer application of PE pipeline system. The large deformation behavior is a key character of PE, not only for its significant strain rate sensitivity, but also for localized necking process after yielding. In this paper, a new constitutive modeling method was proposed to charaterize the rate-denpendent large deformation behavior of PE, in which the true stress is regarded as a function of true stain and true strain rate alone. Uniaxial tensile tests of PE were conducted under various cross-head speeds, and a digital camera was used to record the real-time deformation of specimens. By separating the composite effect into respective effect of local true strain and strain rate on the local true stress in the necking region, a phenomenological model for describing the rate-dependent deformation behavior under uniaxial tension was ealstablished. Model results were validated and found in good agreement with experimental data.


Author(s):  
C. San Marchi ◽  
L. A. Hughes ◽  
B. P. Somerday ◽  
X. Tang

Austenitic stainless steels have been extensively tested in hydrogen environments. These studies have identified the relative effects of numerous materials and environmental variables on hydrogen-assisted fracture. While there is concern that welds are more sensitive to environmental effects than the non-welded base material, in general, there have been relatively few studies of the effects of gaseous hydrogen on the fracture and fatigue resistance of welded microstructures. The majority of published studies have considered welds with geometries significantly different from the welds produced in assembling pressure manifolds. In this study, conventional, uniaxial tensile testing was used to characterize tubing of type 316L austenitic stainless steel with an outside diameter of 6.35 mm. Additionally, orbital tube welds were produced and tested to compare to the non-welded tubing. The effects of internal hydrogen were studied after saturating the tubes and orbital welds with hydrogen by exposure to high-pressure gaseous hydrogen at elevated temperature. The effects of hydrogen on the ductility of the tubing and the orbital tube welds were found to be similar to the effects observed in previous studies of type 316L austenitic stainless steels.


Author(s):  
R. J. Dennis ◽  
R. Kulka ◽  
O. Muransky ◽  
M. C. Smith

A key aspect of any numerical simulation to predict welding induced residual stresses is the development and application of an appropriate material model. Often significant effort is expended characterising the thermal, physical and hardening properties including complex phenomena such as high temperature annealing. Consideration of these aspects is sufficient to produce a realistic prediction for austenitic steels, however ferritic steels are susceptible to solid state phase transformations when heated to high temperatures. On cooling a reverse transformation occurs, with an associated volume change at the isothermal transformation temperature. Although numerical models exist (e.g. Leblond) to predict the evolution of the metallurgical phases, accounting for volumetric changes, it remains a matter of debate as to the magnitude of the impact of phase transformations on residual stresses. Often phase transformations are neglected entirely. In this work a simple phase transformation model is applied to a range of welded structures with the specific aim of assessing the impact, or otherwise, of phase transformations on the magnitude and distribution of predicted residual stresses. The welded structures considered account for a range of geometries from a simple ferritic beam specimen to a thick section multi-pass weld. The outcome of this work is an improved understanding of the role of phase transformation on residual stresses and an appreciation of the circumstances in which it should be considered.


Author(s):  
Andrew Abu-Muharib ◽  
Andrey P. Jivkov ◽  
Peter James ◽  
John R. Yates

The ability to predict variations in cleavage fracture toughness behaviour of ferritic RPV steels, accounting for the effects of irradiation and defect geometry, is vital to safety assessment and life extension decisions. Local approaches to cleavage fracture offer a promising methodology to accomplish such calculations. However, the limited progress achieved by improving the local failure probability expression suggests that the methodology for calculating global cleavage might not be adequately representing real material. The basis for the existing methodology is the weakest-link assumption that all individual failure events are independent and non-interacting. Here an approach is considered which utilises a microstructure-informed model incorporating the experimental knowledge needed to postulate deterministic criteria for particle rupture and micro-crack propagation, whilst accounting for the probabilistic distribution of particle sizes. This is then used in a lattice model that can help detail the evolution of the formation of micro-cracks on global failure, therefore inferring the suitability of the weakest-link assumption. Predicting the probability of cleavage fracture requires such models, as the macroscopic cleavage phenomenon is governed by a number of micro-structural features. The material microstructure is represented by a regular lattice of truncated octahedral cells forming a computational site-bond model, with sites located at the cell centres and connected by two distinct sets of bonds. These bonds are modelled with structural beam elements, which represent all the possible relative deformations between coordinated sites. Particles of various sizes are distributed in the bonds, based on an experimentally determined distribution of cleavage initiating particles in RPV steel (Euro Material A). Although only elastic deformations are considered here, the results demonstrate that the interactions between individual failure events could potentially have a strong effect on the way global failure is reached. Nucleation of micro-cracks by rupturing second-phase particles affects their subsequent formation. In particular, it was found that once formed there is a reduced probability of further development of micro-cracks at particles outside the crack planes and an enhanced probability of formation at particles along the crack planes. This will therefore influence the distribution of micro-crack sizes that could in principle be used to calculate the global probability of failure, and could lead to substantially different distributions of particle sizes, then used in the current local approach methods.


Author(s):  
Kazuhisa Matsumoto ◽  
Shinichi Ohmiya ◽  
Hideki Fujii ◽  
Masaharu Hatano

To confirm a compatibility of a newly developed high strength stainless steel “NSSC STH®2” for hydrogen related applications, tensile and fatigue crack growth properties were evaluated in high pressure hydrogen gas up to 90MPa. At temperatures between −40 and 85°C, no conspicuous deterioration of tensile properties including ductility was observed even in 90 MPa hydrogen gas at −40°C while strength of STH®2 was higher than SUS316L. Although a slight drop of reduction of area was recognized in one specimen tested in 90 MPa hydrogen gas at −40°C, caused by the segregation of Mn, Ni and Cu in the laboratory manufactured 15mm-thick plate, it was considerably improved in the large mill products having less segregation. Fatigue crack growth rates of STH®2 in high pressure hydrogen gas were almost the same as that of SUS316L in air. Although fatigue crack growth rate in air was considerably decelerated and lower than that in hydrogen gas at lower ΔK region, this was probably caused by crack closure brought by oxide debris formed on the fracture surfaces near the crack tip by the strong contact of the fracture surfaces after the fatigue crack was propagated. By taking the obtained results into account, it is concluded that NSSC STH®2 has excellent properties in high pressure hydrogen gas in addition to high strength compared with standard JIS SUS316L.


Author(s):  
Mahyar Asadi ◽  
Dominic Guillot ◽  
Arnaud Weck ◽  
Ashok K. Koul ◽  
Ahmad Chamanfar ◽  
...  

A creep Deformation Mechanism Map (DMM) of an engineering alloy can be an effective tool for developing physics based prognostics systems. Many classical diffusion based rate equations have been developed for time dependent plastic flow where dislocation glide, dislocation glide-plus-climb and vacancy diffusion driven grain boundary migration (diffusion creep) are rate controlling. Long term creep testing and analysis of complex engineering alloys has shown that power law breakdown phenomenon is related to the dominance of Grain Boundary Sliding (GBS) as opposed to diffusion creep. Rate equations are now available for GBS in complex alloys and, in this paper, a DMM is constructed for Waspaloy (a Nickel-Based Superalloy) and validated by comparison with a collection of experimental data obtained from the literature. The GBS accommodated by wedge type cracking is considered dominant at low homologous temperatures (0.3 to 0.5Tm - temperature in Kelvin) whereas GBS accommodated by power-law or cavitations creep dominates above 0.55Tm.


Author(s):  
Sergio Cicero ◽  
Tiberio García ◽  
Virginia Madrazo ◽  
Jorge Cuervo ◽  
Estela Ruiz ◽  
...  

This paper analyses the notch effect in ferritic-pearlitic steel S275JR in a range of temperatures within the material Ductile-to-Brittle Transition Zone (DBTZ). The notch effect is evaluated in terms of load-bearing capacity, apparent fracture toughness (modeled here using the Theory of Critical Distances) and fracture micromechanisms. The concept of Master Curve in notched conditions is also presented. To this end, experimental results obtained in S275JR notched specimens are presented, together with Scanning Electron Microscopy (SEM) fractographies. The analysis is performed at −50 °C, −30 °C and −10 °C, the material Transition Temperature (T0) being −26.1 °C, with the notch radii ranging from 0 mm (crack-type defects) up to 2.0 mm. The results show how the lower the temperature the larger the notch effect, and also that the evolution of both the load bearing capacity and the apparent fracture toughness is directly related to the evolution of fracture micromechanisms. Moreover, the proposed Master Curve in notched conditions has provided good predictions of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document