Pre-Strain Effects on Mixed-Mode Fatigue Crack Propagation Behaviour of the P355NL1 Pressure Vessels Steel

Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.

2019 ◽  
Vol 10 (4) ◽  
pp. 497-514
Author(s):  
Pedro G.P. Leite ◽  
Gilberto Gomes

Purpose The purpose of this paper is to present the application of the boundary element method (BEM) in linear elastic fracture mechanics for analysis of fatigue crack propagation problems in mixed-mode (I+II) using a robust academic software named BemCracker2D and its graphical interface BemLab2D. Design/methodology/approach The methodology consists in calculating elastic stress by conventional BEM and to carry out an incremental analysis of the crack extension employing the dual BEM (DBEM). For each increment of the analysis, the stress intensity factors (SIFs) are computed by the J-Integral technique, the crack growth direction is evaluated by the maximum circumferential stress criterion and the crack growth rate is computed by a modified Paris equation, which takes into account an equivalent SIF to obtain the fracture Modes I and II. The numerical results are compared with the experimental and/or BEM values extracted from the open literature, aiming to demonstrate the accuracy and efficiency of the adopted methodology, as well as to validate the robustness of the programs. Findings The paper addresses the numerical simulation of fatigue crack growth. The main contribution of the paper is the introduction of a software for simulating two-dimensional fatigue crack growth problems in mixed-mode (I+II) via the DBEM. The software BemCracker2D coupled to the BemLab2D graphical user interface (GUI), for pre/post-processing, are very complete, efficient and versatile and its does make relevant contributions in the field of fracture mechanics. Originality/value The main contribution of the manuscript is the development of a GUI for pre/post-processing of 2D fracture mechanics problems, as well as the object oriented programming implementation. Finally, the main merit is of educational nature.


1971 ◽  
Vol 93 (4) ◽  
pp. 671-680 ◽  
Author(s):  
R. Roberts ◽  
J. J. Kibler

Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.


2019 ◽  
Vol 814 ◽  
pp. 176-181
Author(s):  
Sang Hyun Hong ◽  
Sang Deok Kim ◽  
Jae Hoon Kim

The fatigue crack growth rate is the most important factor in predicting the life of a product when applying the damage tolerance design concept. Studies related to pure mode I for structures under fatigue loading have been actively conducted, while not many studies are conducted on the mixed mode. In this study, therefore, mixed mode fatigue crack growth experiments were designed using the Compact-Tension-Shear (CTS) specimens and the loading devices, proposed by Richard. Furthermore, the finite element analysis was used in determining the stress intensity factors of CTS specimen. As the results, the fatigue crack growth rate using the equivalent stress intensity factors proposed by previous researchers was lower than that of pure mode I at the initial stage of crack growth when the load angle increases.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


2017 ◽  
Vol 185 ◽  
pp. 175-192 ◽  
Author(s):  
Grzegorz Lesiuk ◽  
Paweł Kucharski ◽  
José A.F.O. Correia ◽  
A.M.P. De Jesus ◽  
C. Rebelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document