scholarly journals The Temperature Decomposition Method for Simulating Periodic Thermal Flows

Author(s):  
Junfeng Zhang
2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Ping Li ◽  
Junfeng Zhang

To simulate heat transfer processes through periodic devices with nonuniform wall temperature distributions, we propose to decompose the regular temperature into two parts: namely the transient part and the equilibrium part. These two parts can be solved independently under their individual wall and inlet/outlet conditions. By calculating the flow field and the two component functions in one periodic module, one can easily generate the distributions of regular temperature in one or multiple modules. The algorithm and implementation are described in details, and the method is discussed thoroughly from mathematical, physical, and numerical aspects. Sample simulations are also presented to demonstrate the capacity and usefulness of this method for future simulations of thermal periodic flows using various numerical schemes.


Optimization ◽  
1975 ◽  
Vol 6 (4) ◽  
pp. 549-559
Author(s):  
L. Gerencsér

2018 ◽  
Vol 77 (11) ◽  
pp. 945-956 ◽  
Author(s):  
N. N. Kolchigin ◽  
M. N. Legenkiy ◽  
A. A. Maslovskiy ◽  
А. Demchenko ◽  
S. Vinnichenko ◽  
...  

2020 ◽  
Vol 2020 (14) ◽  
pp. 293-1-293-7
Author(s):  
Ankit Manerikar ◽  
Fangda Li ◽  
Avinash C. Kak

Dual Energy Computed Tomography (DECT) is expected to become a significant tool for voxel-based detection of hazardous materials in airport baggage screening. The traditional approach to DECT imaging involves collecting the projection data using two different X-ray spectra and then decomposing the data thus collected into line integrals of two independent characterizations of the material properties. Typically, one of these characterizations involves the effective atomic number (Zeff) of the materials. However, with the X-ray spectral energies typically used for DECT imaging, the current best-practice approaches for dualenergy decomposition yield Zeff values whose accuracy range is limited to only a subset of the periodic-table elements, more specifically to (Z < 30). Although this estimation can be improved by using a system-independent ρe — Ze (SIRZ) space, the SIRZ transformation does not efficiently model the polychromatic nature of the X-ray spectra typically used in physical CT scanners. In this paper, we present a new decomposition method, AdaSIRZ, that corrects this shortcoming by adapting the SIRZ decomposition to the entire spectrum of an X-ray source. The method reformulates the X-ray attenuation equations as direct functions of (ρe, Ze) and solves for the coefficients using bounded nonlinear least-squares optimization. Performance comparison of AdaSIRZ with other Zeff estimation methods on different sets of real DECT images shows that AdaSIRZ provides a higher output accuracy for Zeff image reconstructions for a wider range of object materials.


Sign in / Sign up

Export Citation Format

Share Document