DECOMPOSITION METHOD FOR DETERMINING THE HIGH REFLECTED SECTIONS OF A COMPLEX OBJECT SURFACE

2018 ◽  
Vol 77 (11) ◽  
pp. 945-956 ◽  
Author(s):  
N. N. Kolchigin ◽  
M. N. Legenkiy ◽  
A. A. Maslovskiy ◽  
А. Demchenko ◽  
S. Vinnichenko ◽  
...  
Author(s):  
K. O. Dierenbach ◽  
M. Weinmann ◽  
B. Jutzi

This work describes an iterative algorithm for estimating optimal viewpoints, so called next-best-views (NBVs). The goal is to incrementally construct a topological network from the scene during the consecutive acquisition of several views. Our approach is a hybrid method between a surface-based and a volumetric approach with a continuous model space. Hence, a new scan taken from an optimal position should either cover as much as possible from the unknown object surface in one single scan, or densify the existing data and close possible gaps. Based on the point density, we recover the essential and structural information of a scene based on the Growing Neural Gas (GNG) algorithm. From the created graph representation of topological relations, the density of the point cloud at each network node is estimated by approximating the volume of Voronoi cells. The NBV Finder selects a network node as NBV, which has the lowest point density. Our NBV method is self-terminating when all regions reach a predefined minimum point density or the change of the GNG error is zero. For evaluation, we use a Buddha statue with a rather simple surface geometry but still some concave parts and the Stanford Dragon with a more complex object surface containing occluded and concave parts. We demonstrate that our NBV method outperforms a “naive random” approach relying on uniformly distributed sensor positions in terms of efficiency, i.e. our proposed method reaches a desired minimum point density up to 20% faster with less scans.


Author(s):  
K. O. Dierenbach ◽  
M. Weinmann ◽  
B. Jutzi

This work describes an iterative algorithm for estimating optimal viewpoints, so called next-best-views (NBVs). The goal is to incrementally construct a topological network from the scene during the consecutive acquisition of several views. Our approach is a hybrid method between a surface-based and a volumetric approach with a continuous model space. Hence, a new scan taken from an optimal position should either cover as much as possible from the unknown object surface in one single scan, or densify the existing data and close possible gaps. Based on the point density, we recover the essential and structural information of a scene based on the Growing Neural Gas (GNG) algorithm. From the created graph representation of topological relations, the density of the point cloud at each network node is estimated by approximating the volume of Voronoi cells. The NBV Finder selects a network node as NBV, which has the lowest point density. Our NBV method is self-terminating when all regions reach a predefined minimum point density or the change of the GNG error is zero. For evaluation, we use a Buddha statue with a rather simple surface geometry but still some concave parts and the Stanford Dragon with a more complex object surface containing occluded and concave parts. We demonstrate that our NBV method outperforms a “naive random” approach relying on uniformly distributed sensor positions in terms of efficiency, i.e. our proposed method reaches a desired minimum point density up to 20% faster with less scans.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


Optimization ◽  
1975 ◽  
Vol 6 (4) ◽  
pp. 549-559
Author(s):  
L. Gerencsér

Author(s):  
N. V. Brovka ◽  
P. P. Dyachuk ◽  
M. V. Noskov ◽  
I. P. Peregudova

The problem and the goal.The urgency of the problem of mathematical description of dynamic adaptive testing is due to the need to diagnose the cognitive abilities of students for independent learning activities. The goal of the article is to develop a Markov mathematical model of the interaction of an active agent (AA) with the Liquidator state machine, canceling incorrect actions, which will allow mathematically describe dynamic adaptive testing with an estimated feedback.The research methodologyconsists of an analysis of the results of research by domestic and foreign scientists on dynamic adaptive testing in education, namely: an activity approach that implements AA developmental problem-solving training; organizational and technological approach to managing the actions of AA in terms of evaluative feedback; Markow’s theory of cement and reinforcement learning.Results.On the basis of the theory of Markov processes, a Markov mathematical model of the interaction of an active agent with a finite state machine, canceling incorrect actions, was developed. This allows you to develop a model for diagnosing the procedural characteristics of students ‘learning activities, including: building axiograms of total reward for students’ actions; probability distribution of states of the solution of the problem of identifying elements of the structure of a complex object calculate the number of AA actions required to achieve the target state depending on the number of elements that need to be identified; construct a scatter plot of active agents by target states in space (R, k), where R is the total reward AA, k is the number of actions performed.Conclusion.Markov’s mathematical model of the interaction of an active agent with a finite state machine, canceling wrong actions allows you to design dynamic adaptive tests and diagnostics of changes in the procedural characteristics of educational activities. The results and conclusions allow to formulate the principles of dynamic adaptive testing based on the estimated feedback.


2020 ◽  
Vol 2020 (14) ◽  
pp. 293-1-293-7
Author(s):  
Ankit Manerikar ◽  
Fangda Li ◽  
Avinash C. Kak

Dual Energy Computed Tomography (DECT) is expected to become a significant tool for voxel-based detection of hazardous materials in airport baggage screening. The traditional approach to DECT imaging involves collecting the projection data using two different X-ray spectra and then decomposing the data thus collected into line integrals of two independent characterizations of the material properties. Typically, one of these characterizations involves the effective atomic number (Zeff) of the materials. However, with the X-ray spectral energies typically used for DECT imaging, the current best-practice approaches for dualenergy decomposition yield Zeff values whose accuracy range is limited to only a subset of the periodic-table elements, more specifically to (Z < 30). Although this estimation can be improved by using a system-independent ρe — Ze (SIRZ) space, the SIRZ transformation does not efficiently model the polychromatic nature of the X-ray spectra typically used in physical CT scanners. In this paper, we present a new decomposition method, AdaSIRZ, that corrects this shortcoming by adapting the SIRZ decomposition to the entire spectrum of an X-ray source. The method reformulates the X-ray attenuation equations as direct functions of (ρe, Ze) and solves for the coefficients using bounded nonlinear least-squares optimization. Performance comparison of AdaSIRZ with other Zeff estimation methods on different sets of real DECT images shows that AdaSIRZ provides a higher output accuracy for Zeff image reconstructions for a wider range of object materials.


Sign in / Sign up

Export Citation Format

Share Document