scholarly journals Pattern Analysis Based on Standardization Model in Human Growth -Proposal for Fujimmon’s and Scammon’s Comparative Growth Curve-

Author(s):  
Katsunori Fujii
1926 ◽  
Vol 10 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Charles B. Davenport

The human growth curve shows two (and only two) outstanding periods of accelerated growth—the circumnatal and the adolescent. The circumnatal growth cycle attains great velocity, which reaches a maximum at the time of birth. The curve of this cycle is best fitted by a theoretical skew curve of Pearson's Type I. It has a theoretical range of 44 months and a standard deviation of 5.17 months. The modal velocity is 10.2 kilos per year. The adolescent growth cycle has less maximum velocity and greater range in time than the circumnatal cycle. The best fitting theoretical curve is a normal frequency curve ranging over about 10 years with a standard deviation of about 21 months and a modal velocity of 4.5 kilos per year. The two great growth accelerations are superimposed on a residual curve of growth which measures a substratum of growth out of which the accelerations arise. This probably extends from conception to 55 years, on the average. It is characterized by low velocity, averaging about 2 kilos per year from 2 to 12 years. It is interpreted as due to many growth operations coincident or closely blending in time. Our curve shows no third marked period of acceleration at between the 3rd and 6th years. The total growth in weight of the body is the sum of the weight of its constituent organs. In some cases these keep pace with the growth of the body as a whole; great accelerations of body growth are due to great accelerations in growth of the constituent organs. In other cases one of the organs of the body (like the thymus gland) may undergo a change in weight that is not in harmony with that of the body as a whole. The development of the weight in man is the resultant of many more or less elementary growth processes. These result in two special episodes of growth and numerous smaller, blending, growth operations. Hypotheses are suggested as to the basis of the special growth accelerations.


Human Growth ◽  
1986 ◽  
pp. 153-166 ◽  
Author(s):  
Elizabeth S. Watts
Keyword(s):  

2014 ◽  
Vol 307 (4) ◽  
pp. L338-L344 ◽  
Author(s):  
Matt J. Herring ◽  
Lei F. Putney ◽  
Gregory Wyatt ◽  
Walter E. Finkbeiner ◽  
Dallas M. Hyde

Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats.


Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Sign in / Sign up

Export Citation Format

Share Document