Nuclear norm-based two-dimensional discriminant locality preserving projection for face recognition

2018 ◽  
Vol 27 (04) ◽  
pp. 1
Author(s):  
Lijiang Chen ◽  
Wentao Dou ◽  
Xia Mao
2010 ◽  
Vol 121-122 ◽  
pp. 391-398 ◽  
Author(s):  
Qi Rong Zhang ◽  
Zhong Shi He

In this paper, we propose a new face recognition approach for image feature extraction named two-dimensional locality discriminant preserving projections (2DLDPP). Two-dimensional locality preserving projections (2DLPP) can direct on 2D image matrixes. So, it can make better recognition rate than locality preserving projection. We investigate its more. The 2DLDPP is to use modified maximizing margin criterion (MMMC) in 2DLPP and set the parameter optimized to maximize the between-class distance while minimize the within-class distance. Extensive experiments are performed on ORL face database and FERET face database. The 2DLDPP method achieves better face recognition performance than PCA, 2DPCA, LPP and 2DLPP.


Author(s):  
Huxidan Jumahong ◽  
Gulnaz Alimjan

This paper proposes a novel algorithm for feature extraction for face recognition, namely the rearranged modular two-dimensional locality preserving projection (Rm2DLPP). In the proposed algorithm, the original images are first divided into modular blocks, then the subblocks are rearranged to form two-dimensional matrices and finally the two-dimensional locality preserving projection algorithm is applied directly on the arranged matrices. The advantage of the Rm2DLPP algorithm is that it can utilize the local block features and global spatial structures of 2D face images simultaneously. The performance of the proposed method is evaluated and compared with other face recognition methods on the ORL, AR and FERET databases. The experimental results demonstrate the effectiveness and superiority of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Guofeng Zou ◽  
Yuanyuan Zhang ◽  
Kejun Wang ◽  
Shuming Jiang ◽  
Huisong Wan ◽  
...  

To solve the matching problem of the elements in different data collections, an improved coupled metric learning approach is proposed. First, we improved the supervised locality preserving projection algorithm and added the within-class and between-class information of the improved algorithm to coupled metric learning, so a novel coupled metric learning method is proposed. Furthermore, we extended this algorithm to nonlinear space, and the kernel coupled metric learning method based on supervised locality preserving projection is proposed. In kernel coupled metric learning approach, two elements of different collections are mapped to the unified high dimensional feature space by kernel function, and then generalized metric learning is performed in this space. Experiments based on Yale and CAS-PEAL-R1 face databases demonstrate that the proposed kernel coupled approach performs better in low-resolution and fuzzy face recognition and can reduce the computing time; it is an effective metric method.


Sign in / Sign up

Export Citation Format

Share Document