High-resolution, real-time three-dimensional shape measurement on graphics processing unit

2014 ◽  
Vol 53 (02) ◽  
pp. 1 ◽  
Author(s):  
Nikolaus L. Karpinsky ◽  
Morgan Hoke ◽  
Vincent Chen ◽  
Song Zhang
2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


2021 ◽  
Vol 87 (5) ◽  
pp. 363-373
Author(s):  
Long Chen ◽  
Bo Wu ◽  
Yao Zhao ◽  
Yuan Li

Real-time acquisition and analysis of three-dimensional (3D) human body kinematics are essential in many applications. In this paper, we present a real-time photogrammetric system consisting of a stereo pair of red-green-blue (RGB) cameras. The system incorporates a multi-threaded and graphics processing unit (GPU)-accelerated solution for real-time extraction of 3D human kinematics. A deep learning approach is adopted to automatically extract two-dimensional (2D) human body features, which are then converted to 3D features based on photogrammetric processing, including dense image matching and triangulation. The multi-threading scheme and GPU-acceleration enable real-time acquisition and monitoring of 3D human body kinematics. Experimental analysis verified that the system processing rate reached ∼18 frames per second. The effective detection distance reached 15 m, with a geometric accuracy of better than 1% of the distance within a range of 12 m. The real-time measurement accuracy for human body kinematics ranged from 0.8% to 7.5%. The results suggest that the proposed system is capable of real-time acquisition and monitoring of 3D human kinematics with favorable performance, showing great potential for various applications.


2019 ◽  
Vol 58 (04) ◽  
pp. 1 ◽  
Author(s):  
Guangkai Fu ◽  
Yiping Cao ◽  
Yapin Wang ◽  
Yingying Wan ◽  
Lu Wang ◽  
...  

2012 ◽  
Vol 268-270 ◽  
pp. 1706-1709
Author(s):  
Qian Li Wang ◽  
Jian Fu ◽  
Ren Bo Tan ◽  
Li Yuan Chen

Industrial computed tomography (ICT) is an advanced non-contact non-destructive testing technique and plays a key role in many fields. Low imaging efficiency is one of the drawbacks of ICT towards engineering applications. In this paper, we report the design and realization of real-time three-dimensional Visualization System for ICT based on visualization toolkit (VTK) and the graphics processing unit (GPU) technique. It greatly improves the imaging speed by developing the new techniques in three aspects such as image reconstruction, data compression and fast volume rendering with GPU and VTK. It will find applications in three-dimensional ICT systems.


Optik ◽  
2015 ◽  
Vol 126 (21) ◽  
pp. 2781-2787 ◽  
Author(s):  
Dawu He ◽  
Yiping Cao ◽  
Dinggao He ◽  
Song Sun

Sign in / Sign up

Export Citation Format

Share Document