Programmable diffractive optical elements using spatial light modulators

Author(s):  
Jeffrey A. Davis
2020 ◽  
Vol 10 (12) ◽  
pp. 4288
Author(s):  
Max Liebmann ◽  
Alexander Treffer ◽  
Martin Bock ◽  
Ulrike Wallrabe ◽  
Ruediger Grunwald

Recently, the spatio-spectral propagation dynamic of ultrashort-pulsed vortex beams was demonstrated by 2D mapping of spectral moments. The rotation of characteristic anomalies, so-called “spectral eyes”, was explained by wavelength-dependent Gouy phase shift. Controlling of this spectral rotation is essential for specific applications, e.g., communication and processing. Here, we report on advanced concepts for spectral rotational control and related first-proof-of-principle experiments. The speed of rotation of spectral eyes during propagation is shown to be essentially determined by angular and spectral parameters. The performance of fixed diffractive optical elements (DOE) and programmable liquid-crystal-on silicon spatial light modulators (LCoS-SLMs) that act as spiral phase gratings (SPG) or spiral phase plates (SPP) is compared. The approach is extended to radially chirped SPGs inducing axially variable angular velocity. The generation of time-dependent orbital angular momentum (self-torque) by superimposing multiple vortex pulses is proposed.


2004 ◽  
Author(s):  
Pierre Ambs ◽  
Laurent Bigue ◽  
Rostislav I. Rokitski ◽  
Yeshaiahu Fainman

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6690
Author(s):  
Svetlana N. Khonina ◽  
Nikolay L. Kazanskiy ◽  
Pavel A. Khorin ◽  
Muhammad A. Butt

Axicon is a versatile optical element for forming a zero-order Bessel beam, including high-power laser radiation schemes. Nevertheless, it has drawbacks such as the produced beam’s parameters being dependent on a particular element, the output beam’s intensity distribution being dependent on the quality of element manufacturing, and uneven axial intensity distribution. To address these issues, extensive research has been undertaken to develop nondiffracting beams using a variety of advanced techniques. We looked at four different and special approaches for creating nondiffracting beams in this article. Diffractive axicons, meta-axicons-flat optics, spatial light modulators, and photonic integrated circuit-based axicons are among these approaches. Lately, there has been noteworthy curiosity in reducing the thickness and weight of axicons by exploiting diffraction. Meta-axicons, which are ultrathin flat optical elements made up of metasurfaces built up of arrays of subwavelength optical antennas, are one way to address such needs. In addition, when compared to their traditional refractive and diffractive equivalents, meta-axicons have a number of distinguishing advantages, including aberration correction, active tunability, and semi-transparency. This paper is not intended to be a critique of any method. We have outlined the most recent advancements in this field and let readers determine which approach best meets their needs based on the ease of fabrication and utilization. Moreover, one section is devoted to applications of axicons utilized as sensors of optical properties of devices and elements as well as singular beams states and wavefront features.


2007 ◽  
Author(s):  
R. L. Sutherland ◽  
V. P. Tondiglia ◽  
L. V. Natarajan ◽  
J. M. Wofford ◽  
S. A. Siwecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document