scholarly journals Two-photon microscopy with diffractive optical elements and spatial light modulators

2010 ◽  
Vol 4 ◽  
Author(s):  
Brendon O. Watson
2013 ◽  
Vol 38 (4) ◽  
pp. 440 ◽  
Author(s):  
Jorge Pérez-Vizcaíno ◽  
Omel Mendoza-Yero ◽  
Gladys Mínguez-Vega ◽  
Raúl Martínez-Cuenca ◽  
Pedro Andrés ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 4288
Author(s):  
Max Liebmann ◽  
Alexander Treffer ◽  
Martin Bock ◽  
Ulrike Wallrabe ◽  
Ruediger Grunwald

Recently, the spatio-spectral propagation dynamic of ultrashort-pulsed vortex beams was demonstrated by 2D mapping of spectral moments. The rotation of characteristic anomalies, so-called “spectral eyes”, was explained by wavelength-dependent Gouy phase shift. Controlling of this spectral rotation is essential for specific applications, e.g., communication and processing. Here, we report on advanced concepts for spectral rotational control and related first-proof-of-principle experiments. The speed of rotation of spectral eyes during propagation is shown to be essentially determined by angular and spectral parameters. The performance of fixed diffractive optical elements (DOE) and programmable liquid-crystal-on silicon spatial light modulators (LCoS-SLMs) that act as spiral phase gratings (SPG) or spiral phase plates (SPP) is compared. The approach is extended to radially chirped SPGs inducing axially variable angular velocity. The generation of time-dependent orbital angular momentum (self-torque) by superimposing multiple vortex pulses is proposed.


2004 ◽  
Author(s):  
Pierre Ambs ◽  
Laurent Bigue ◽  
Rostislav I. Rokitski ◽  
Yeshaiahu Fainman

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Oscar Hernandez ◽  
Eirini Papagiakoumou ◽  
Dimitrii Tanese ◽  
Kevin Fidelin ◽  
Claire Wyart ◽  
...  

Abstract Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Edoardo Carnio ◽  
Andreas Buchleitner ◽  
Frank Schlawin

We investigate how entanglement can enhance two-photon absorption in a three-level system. First, we employ the Schmidt decomposition to determine the entanglement properties of the optimal two-photon state to drive such a transition, and the maximum enhancement which can be achieved in comparison to the optimal classical pulse. We then adapt the optimization problem to realistic experimental constraints, where photon pairs from a down-conversion source are manipulated by local operations such as spatial light modulators. We derive optimal pulse shaping functions to enhance the absorption efficiency, and compare the maximal enhancement achievable by entanglement to the yield of optimally shaped, separable pulses.


2021 ◽  
Vol 9 ◽  
Author(s):  
Samira Aghayee ◽  
Mitchell Weikert ◽  
Phillip Alvarez ◽  
Gabriel A. Frank ◽  
Wolfgang Losert

For their capacity to shape optical wavefronts in real time into any desired illumination pattern, phase-only Spatial Light Modulators (SLM) have proven to be powerful tools for optical trapping and micromanipulation applications. SLMs are also becoming increasingly utilized in selective photo-stimulation of groups of neurons in the brain. However, conventional SLM based wavefront modulation introduces artifacts that are particularly detrimental for photo-stimulation applications. The primary issue is the unmodulated light that travels along the 0th order of diffraction. This portion of light is commonly blocked at the center of the object plane, which prevents photo-stimulation in the blocked region. We demonstrate a virtual lens configuration that moves the 1st order diffraction with the desired illumination pattern into the Fourier plane of the 0th order light. This virtual lens setup makes the whole field of view accessible for photo-stimulation and eliminates the need for removing the 0th order light in two-photon applications. Furthermore, in an example application to reconstruct a pattern consisting of an array of points, the virtual lens configuration increases the uniformity of the intensities these points. Moreover, diffraction-induced artifacts are also significantly reduced within the target plane. Therefore, our proposed high fidelity configuration yields target points with high signal to noise ratio.


Sign in / Sign up

Export Citation Format

Share Document