Development of an LED-based fiber optic oxygen sensor using a sol-gel-derived coating

Author(s):  
Brian D. MacCraith ◽  
Gerard O'Keeffe ◽  
Aisling K. McEvoy ◽  
Colette M. McDonagh
Keyword(s):  
2004 ◽  
Vol 19 (1) ◽  
pp. 19-22
Author(s):  
Huang Jun ◽  
Han Yun ◽  
Zhang Tian-hua ◽  
Jiang De-sheng ◽  
Yue Fang-yu

2000 ◽  
Vol 42 (7-8) ◽  
pp. 283-290 ◽  
Author(s):  
H.-C. Tsai ◽  
R.-A. Doong

A sol-gel based fiber-optic biosensor with acetylcholinesterase as the biorecognition element has been developed for the rapid determination of organophosphorus pesticides. Nine fluorescent indicators, acridine, acridine orange, neutral red, DAPI, rhodamine B, fluorescein, umbelliferone, FITC on celite and FITC-dextran, have been examined to optimize the fiber-optic system. Results showed that acridine and FITCs were sensitive to the change of pH value caused by the enzyme-substrate catalysis reaction. However, the sensitivity of acridine was 260 times lower than that of FITCs. Higher toxicity of acridine to acetylcholinesterase than FITC was also observed. Moreover, the high-molecular-weight FITC-dextran showed low leakage rate when immobilizing using sol-gel technology, showing that the FITC-dextran was a suitable pH sensitive fluorescent indicator for the OPPs biosensor. The response of the fiber-optic biosensor to the substrate, acetylcholine, was highly reproducible (RSD=3.5%). A good linearity of acetylcholine in the range from 0.5 to 20 mM was also obtained (R2=0.98). Furthermore, a 30% inhibition can be achieved in 30min when 152 ppb paraoxon was added into the system. The results show the possibility for real-time determination of organophosphorus pesticides by using the biosensor developed in this study.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5075
Author(s):  
Ondřej Podrazký ◽  
Jan Mrázek ◽  
Jana Proboštová ◽  
Soňa Vytykáčová ◽  
Ivan Kašík ◽  
...  

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.


2008 ◽  
Vol 161 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Jinjun Jiang ◽  
Lei Gao ◽  
Wei Zhong ◽  
Shen Meng ◽  
Ben Yong ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document