Application of sol-gel processes for fiber optic chemical sensor development

Author(s):  
Peter A. Wallace ◽  
Yatao Yang ◽  
Michael Campbell
Author(s):  
Budi Mulyanti ◽  
Yuski Maolid Rizki Faozan ◽  
Ajuni B. Pantjawati ◽  
Roer Eka Pawinanto ◽  
Lilik Hasanah ◽  
...  

2000 ◽  
Vol 42 (7-8) ◽  
pp. 283-290 ◽  
Author(s):  
H.-C. Tsai ◽  
R.-A. Doong

A sol-gel based fiber-optic biosensor with acetylcholinesterase as the biorecognition element has been developed for the rapid determination of organophosphorus pesticides. Nine fluorescent indicators, acridine, acridine orange, neutral red, DAPI, rhodamine B, fluorescein, umbelliferone, FITC on celite and FITC-dextran, have been examined to optimize the fiber-optic system. Results showed that acridine and FITCs were sensitive to the change of pH value caused by the enzyme-substrate catalysis reaction. However, the sensitivity of acridine was 260 times lower than that of FITCs. Higher toxicity of acridine to acetylcholinesterase than FITC was also observed. Moreover, the high-molecular-weight FITC-dextran showed low leakage rate when immobilizing using sol-gel technology, showing that the FITC-dextran was a suitable pH sensitive fluorescent indicator for the OPPs biosensor. The response of the fiber-optic biosensor to the substrate, acetylcholine, was highly reproducible (RSD=3.5%). A good linearity of acetylcholine in the range from 0.5 to 20 mM was also obtained (R2=0.98). Furthermore, a 30% inhibition can be achieved in 30min when 152 ppb paraoxon was added into the system. The results show the possibility for real-time determination of organophosphorus pesticides by using the biosensor developed in this study.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5075
Author(s):  
Ondřej Podrazký ◽  
Jan Mrázek ◽  
Jana Proboštová ◽  
Soňa Vytykáčová ◽  
Ivan Kašík ◽  
...  

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.


1993 ◽  
Vol 47 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Stephane Mottin ◽  
Canh Tran-Minh ◽  
Pierre Laporte ◽  
Raymond Cespuglio ◽  
Michel Jouvet

At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.


1991 ◽  
Vol 7 (Supple) ◽  
pp. 1465-1468 ◽  
Author(s):  
YUJI KAWABATA ◽  
KEN-ICHI YASUNAGA ◽  
TOTARO IMASAKA ◽  
NOBUHIKO ISHIBASHI

Sign in / Sign up

Export Citation Format

Share Document