Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

2013 ◽  
Author(s):  
Alireza Farhidzadeh ◽  
Ehsan Dehghan-Niri ◽  
Salvatore Salamone
2017 ◽  
Vol 28 (19) ◽  
pp. 2717-2736 ◽  
Author(s):  
Naveet Kaur ◽  
Lingfang Li ◽  
Suresh Bhalla ◽  
Yong Xia ◽  
Pinghe Ni ◽  
...  

Since the last two decades, the electro-mechanical impedance technique has undergone extensive theoretical and experimental transformations coupled with the evolution of newer practical adaptations and variants. Notable among these are the metal wire–based variant, the dual piezo configuration and the embedded configuration, over and above the conventional surface-bonded configuration. Although there is a plethora of electro-mechanical impedance–related research devoted to metallic structures, only a limited number of studies are available for reinforced concrete structures, which are characterized by more complex behaviour and pose multiple problems for the electro-mechanical impedance sensors such as small range and high damping due to heterogeneous constitution. This article presents, for the first time, a comprehensive comparative study covering four different variants, namely, the surface-bonded single piezo configuration, the embedded single piezo configuration and the metal wire single piezo configuration in electro-mechanical impedance technique for structural health monitoring of a real-life-sized reinforced concrete beam subjected to destructive testing. The article also proposes a modified and more practical version of the dual piezo configuration called the modified dual piezo configuration, employing concrete vibration sensors. It is found that the modified dual piezo configuration is the most expedient among all variants in capturing the damage with respect to the first occurrence of cracks and the final warning of ultimate failure. Metal wire single piezo configuration is good in detecting the first level of damage; however, its efficiency ceases thereafter when crack size increases. It can be considered as an alternative to surface-bonded single piezo configuration in the scenarios where the damage level is incipient. The sensitivity of the modified dual piezo configuration increases with increasing number of actuators connected in parallel due to an increase in the output current. Also, contrary to the surface-bonded single piezo configuration, the susceptance signature of the modified dual piezo configuration is equally sensitive to damage due to the absence of capacitance part in its admittance signature. Hence, its susceptance can also be used for damage severity measurement for incipient damage level in reinforced concrete structures. The surface-bonded single piezo configuration is found to be best in quantifying damage severity in terms of the equivalent stiffness parameter. Embedded single piezo configuration and metal wire single piezo configuration, on the other hand, correlate well with the global dynamic stiffness of the structure. Overall, the proposed integration enables an early detection of damage, its propagation and improved severity measurement for reinforced concrete structures, thus contributing to new application protocols.


Author(s):  
Mohsen Ghabdian ◽  
Seyed BB Aval ◽  
Mohammad Noori ◽  
Wael A Altabey

An important and critical area within the broad domain of structural health monitoring, as related to reinforced civil and mechanical structures, is the assessment of creep, shrinkage, and high-temperature effects on reliability and serviceability. Unfortunately, the monitoring and impact of these inherent mechanical characteristics and behaviors, and subsequent impact on serviceability, have rarely been considered in the literature in structural health monitoring. In this paper, the microprestress-solidification creep theory for beams is generalized for the simultaneous effect of linear/nonlinear creep, shrinkage, and high temperature in a reliability framework. This study conducts a systematic time-dependent procedure for the reliability analysis of structures using a powerful nanoscale method. It must be noted that this paper aims to extend the previously developed microprestress-solidification method in a health monitoring reliability-based framework with a close look at a nonlinear creep, parameters affecting creep, and long-time high temperature. A finite element approach is proposed where creep, shrinkage, temperature, and cracking are considered using strain splitting theory. First, the model performance was evaluated by comparing the results with the experimental test available in the literature in the case of creep and shrinkage. Then, the simultaneous effect of creep, shrinkage, and temperature was compared with experimental results obtained by the authors. Reliability analysis was applied to reinforced concrete beams subjected to sustained gravity loading and uniform temperature history in order to calculate exceedance probability in the serviceability limit state. It was found that the exceedance probability of reinforced concrete beams was dependent on the shear span-to-depth ratio. In the serviceability limit state, exceedance probabilities of 0.012 and 0.157 were calculated for the span-to-depth ratios of 1 and 5, respectively. In addition, it was shown that temperature plays an important role in the reliability of reinforced concrete beams. A 4.27-fold increase was observed in the case of moderate to high temperature. Finally, for three different load levels of 40%, 70%, and 80%, the exceedance probabilities were 0.156, 0.328, and 0.527, respectively, suggesting that load level is another key parameter affecting the reliability of reinforced concrete beams. It is thus concluded these fundamental phenomenological studies should be further considered as part of the broad field of structural health monitoring.


2020 ◽  
pp. 147592172095112
Author(s):  
Lidor Yosef ◽  
Yiska Goldfeld

The goal of this study is to develop a structural health monitoring methodology for smart self-sensory carbon-based textile reinforced concrete elements. The self-sensory concept is based on measuring the electrical resistance change in the carbon roving reinforcement and by means of an engineering gage factor, correlating the relative electrical resistance change to an integral value of strain along the location of the roving. The concept of the nonlinear engineering gage factor that captures the unique micro-structural mechanism of the roving within the concrete matrix is demonstrated and validated. The estimated value of strain is compared to a theoretical value calculated by assuming a healthy state. The amount of discrepancy between the two strain values makes it possible to indicate and distinguish between the structural states. The study experimentally demonstrates the engineering gage factor concept and the structural health monitoring procedure by mechanically loading two textile reinforced concrete beams, one by a monotonic loading procedure and the other by a cyclic loading procedure. It is presented that the proposed structural health monitoring procedure succeeded in estimating the strain and in clearly distinguishing between the structural states.


Sign in / Sign up

Export Citation Format

Share Document