Optimum feature size of randomly textured glass substrates for maximum scattering inside thin-film silicon solar cells

Author(s):  
Nasim Sahraei ◽  
Selvaraj Venkataraj ◽  
Armin G. Aberle ◽  
Marius Peters
2011 ◽  
Vol 1321 ◽  
Author(s):  
O. Isabella ◽  
P. Liu ◽  
B. Bolman ◽  
J. Krč ◽  
M. Zeman

ABSTRACTModulated surface-textured substrates for thin-film silicon solar cells exhibiting high haze in a broad range of wavelengths were fabricated. Glass substrates coated with different thicknesses of a sacrificial layer were wet-etched allowing the manipulation of the surface morphology with surface roughness ranging from 200 nm up to 1000 nm. Subsequently, zinc-oxide layers were sputtered and then wet-etched constituting the final modulated textures. The morphological analysis of the substrates demonstrated the surface modulation, and the optical analysis revealed broad angle intensity distributions and high hazes. A small anti-reflective effect with respect to untreated glass was found for etched glass samples. The performance of solar cells on high-haze substrates was evaluated. The solar cells outperformed the reference cell fabricated on a randomly-textured zinc-oxide-coated flat glass. The trend in the efficiency resembled the increased surface roughness and the anti-reflective effect was confirmed also in solar cell devices.


2011 ◽  
Vol 520 (4) ◽  
pp. 1218-1222 ◽  
Author(s):  
J. Steinhauser ◽  
J.-F. Boucher ◽  
E. Omnes ◽  
D. Borrello ◽  
E. Vallat-Sauvain ◽  
...  

2012 ◽  
Vol 1426 ◽  
pp. 75-80 ◽  
Author(s):  
K. Jäger ◽  
M. Fischer ◽  
R.A.C.M.M. van Swaaij ◽  
M. Zeman

ABSTRACTWe recently developed a scattering model based on the scalar scattering theory. In this contribution we present how we used the scattering model to investigate interface textures with optimized scattering properties. We used the simulated annealing algorithm to find optimized surface textures and applied the ASA device simulator to evaluate the influence of these optimized textures on the performance of thin film silicon solar cells. We found that the lateral feature size of the textures is crucial for efficient scattering of the incident light.


2017 ◽  
Vol 29 (4) ◽  
pp. 3210-3218 ◽  
Author(s):  
Sukanta Bose ◽  
Arokiyadoss Rayarfrancis ◽  
P. Balaji Bhargav ◽  
Gufran Ahmad ◽  
Sumita Mukhopadhyay ◽  
...  

2018 ◽  
Vol 57 (19) ◽  
pp. 5348 ◽  
Author(s):  
Ke Chen ◽  
Rui Wu ◽  
Hongmei Zheng ◽  
Yuanyuan Wang ◽  
Xiaopeng Yu

2015 ◽  
Vol 355 ◽  
pp. 14-18 ◽  
Author(s):  
Yanfeng Wang ◽  
Xiaodan Zhang ◽  
Bing Han ◽  
Lisha Bai ◽  
Huixu Zhao ◽  
...  

2010 ◽  
Author(s):  
T. Söderström ◽  
D. Dominé ◽  
A. Feltrin ◽  
M. Despeisse ◽  
F. Meillaud ◽  
...  

2016 ◽  
Vol 16 (5) ◽  
pp. 4978-4983 ◽  
Author(s):  
Sungjae Bong ◽  
Shihyun Ahn ◽  
Le Huy Tuan Anh ◽  
Sunbo Kim ◽  
Hyeongsik Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document