Pressure Chemical
Recently Published Documents





Ding-Yuan Chen ◽  
Axel R Persson ◽  
Kai Hsin Wen ◽  
Daniel Sommer ◽  
Jan Gruenenpuett ◽  

Abstract The impact on the performance of GaN HEMTs of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 minutes) were compared in terms of interface properties and device performance. A reduction of oxygen at the interface between SiN and epi-structure is detected by Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy measurements in the sample subjected to 10 minutes of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9 % (compared to 16% for the untreated sample), which is attributed to the reduction of oxygen at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 minutes significantly improves the current dispersion uniformity from 14.5 % to 1.9 %. The reduced trapping effects result in a high output power of 3.4 W/mm at 3 GHz (compared to 2.6 W/mm for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before low-pressure chemical vapor deposition of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.

2021 ◽  
Vol 3 (1) ◽  
Avinash Dalmia ◽  
Erasmus Cudjoe ◽  
Jacob Jalali ◽  
Feng Qin

Abstract Background Pesticide testing for hemp has traditionally focused on techniques like QuEChERS with dSPE and SPE which demand time-consuming sample preparation, typically resulting in poor recovery rates for some pesticides, and requires the use of both LC-MS/MS and GC-MS/MS based instruments to cover the analysis for all regulated pesticides. In this study, we describe a streamlined approach for working with LC-MS/MS featuring a dual electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources using solvent extraction for faster and easier sample preparation and with 80–120% recovery for the analysis of all of 66 pesticides (regulated by California state in cannabis) with low detection limits in hemp. Methods A simple solvent extraction with acetonitrile was used to extract pesticides from hemp. A LC-MS/MS system with dual ESI and APCI source was used to determine sensitivity for the analysis of 66 pesticides in hemp matrix, 62 pesticides were analyzed using an 18-min LC-MS/MS method with an ESI source and the other 4 pesticides were measured using a 6-min LC-MS/MS method with an APCI source. Results The limit of quantitation (LOQ) of all 66 pesticides in hemp was in the range of 0.0025–0.1 μg/g which was well below the California state action limits of these analytes in cannabis products. A simple, fast, and cost-effective solvent extraction method was used for sample preparation to get good recovery in the range of 80–120% with RSD less than 20%. The unique ionization mechanism of chlorinated pesticides such as pentachloronitrobenzene using the LC-MS/MS system with an APCI source was elucidated. The proficiency test report generated with the LC-MS/MS method showed acceptable results for all of 66 pesticides in hemp with all of th z scores less than 2 with no false positives and negatives. The stability data collected over 5 days showed RSD less than 20% for 66 pesticides in hemp, and this demonstrated the robustness of the LC-MS/MS system used in this work. Conclusions A LC-MS/MS method with dual ESI and APCI sources was developed for the analysis of 66 pesticides in hemp. The recovery of all pesticides from a hemp matrix was in the acceptable range of 80–120% with RSD less than 20%.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3112
Ruinan Wu ◽  
Yueguo Hu ◽  
Peisen Li ◽  
Junping Peng ◽  
Jiafei Hu ◽  

The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-quality graphene/ferromagnetic epitaxial interfaces are mainly limited by the single-crystal size of the Ni (111) substrate and well-oriented graphene domains. In this work, based on the preparation of a 2-inch single-crystal Ni (111) film on an Al2O3 (0001) wafer, we successfully achieve the production of a full-coverage, high-quality graphene monolayer on a Ni (111) substrate with an atomically sharp interface via ambient pressure chemical vapor deposition (APCVD). The high crystallinity and strong coupling of the well-oriented epitaxial graphene/Ni (111) interface are systematically investigated and carefully demonstrated. Through the analysis of the growth model, it is shown that the oriented growth induced by the Ni (111) crystal, the optimized graphene nucleation and the subsurface carbon density jointly contribute to the resulting high-quality graphene/Ni (111) heterostructure. Our work provides a convenient approach for the controllable fabrication of a large-area homogeneous graphene/ferromagnetic interface, which would benefit interface engineering of graphene-based MTJs and future chip-level 2D spintronic applications.

Sign in / Sign up

Export Citation Format

Share Document