scholarly journals Low-rank matrix estimation-based spatio-temporal image reconstruction for dynamic photoacoustic computed tomography

Author(s):  
Kun Wang ◽  
Jun Xia ◽  
Changhui Li ◽  
Lihong V. Wang ◽  
Mark A. Anastasio
2018 ◽  
Vol 46 (6B) ◽  
pp. 3481-3509 ◽  
Author(s):  
Andreas Elsener ◽  
Sara van de Geer

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3368
Author(s):  
Rui Hu ◽  
Jun Tong ◽  
Jiangtao Xi ◽  
Qinghua Guo ◽  
Yanguang Yu

Hybrid massive MIMO structures with lower hardware complexity and power consumption have been considered as potential candidates for millimeter wave (mmWave) communications. Channel covariance information can be used for designing transmitter precoders, receiver combiners, channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker product expansion and use a low-complexity algorithm to solve this problem. Numerical results with uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate the effectiveness of our proposed method.


Author(s):  
Caiyun Huang ◽  
Guojun Qin

This paper investigates how to perform robust and efficient unsupervised video segmentation while suppressing the effects of data noises and/or corruptions. The low-rank representation is pursued for video segmentation. The supervoxels affinity matrix of an observed video sequence is given, low-rank matrix optimization seeks a optimal solution by making the matrix rank explicitly determined. We iteratively optimize them with closed-form solutions. Moreover, we incorporate a discriminative replication prior into our framework based on the obervation that small-size video patterns, and it tends to recur frequently within the same object. The video can be segmented into several spatio-temporal regions by applying the Normalized-Cut algorithm with the solved low-rank representation. To process the streaming videos, we apply our algorithm sequentially over a batch of frames over time, in which we also develop several temporal consistent constraints improving the robustness. Extensive experiments are on the public benchmarks, they demonstrate superior performance of our framework over other approaches.


Sign in / Sign up

Export Citation Format

Share Document