Fiber powered sensing system for a long reach single mode fiber link and non-continuous applications

Author(s):  
J. B. Rosolem ◽  
F. R. Bassan ◽  
F. R. Pereira ◽  
R. S. Penze ◽  
A. A. Leonardi ◽  
...  
Author(s):  
Muhammad Usman Hadi

Machine learning (ML) methodologies have been looked upon recently as a potential candidate for mitigating nonlinearity issues in optical communications. In this paper, we experimentally demonstrate a 40-Gb/s 256-quadrature amplitude modulation (QAM) signal-based Radio over Fiber (RoF) system for 50 km of standard single mode fiber length which utilizes support vector machine (SVM) decision method to indicate an effective nonlinearity mitigation. The influence of different impairments in the system is evaluated that includes the influences of Mach-Zehnder Modulator nonlinearities, in-phase and quadrature phase skew of the modulator. By utilizing SVM, the results demonstrated in terms of bit error rate and eye linearity suggest that impairments are significantly reduced and licit input signal power span of 5dBs is enlarged to 15 dBs.


2020 ◽  
Vol 8 (5) ◽  
pp. 4286-4289

The requirement of the modern application is to transmit wide bandwidth of signal with the low latency. The optical fibers provide wide transmission bandwidth along with very little delay as well as choice on choosing transmission medium for high data rate. However, Stimulated Brillouin Scattering (SBS) is a nonlinear optical effect that restricts power level into a fiber to few milliwatts. It degrades the Q-factor and consequently the bit error rate of an optical fiber link. For suppression of SBS, various approaches have been used previously such as PSK, ASK, FSK, CSRZ-DQPSK etc. Among all the previous techniques, CSRZ-DQPSK transmitter is considered as the most efficient one for suppression of SBS. However, it consists of some drawbacks such as low spectrum efficiency, susceptibility to phase variation and short communication range, due to which requirement arises of upgrading the previous work. Therefore, in the proposed work (i.e. CSRZ-DP-QPSK), DP-QPSK scheme is used which makes the system more efficient as it has high spectrum efficiency and improved sensitivity. Also, the communication range is elongated in present work. The performance evaluation of CSRZ-DP-QPSK approach has been performed in terms of Q-Factor, BER, and threshold. Also, the comparative analysis of the proposed approach with conventional approaches has been performed and from the obtained results it has been demonstrated that proposed work is more efficient than conventional one as it has better SBS tolerance and improved BER.


Author(s):  
Jasper R. Stroud ◽  
Olukayode Okusaga ◽  
Gregory Weaver ◽  
Nelli Mosavi ◽  
Mark A. Foster

Sign in / Sign up

Export Citation Format

Share Document