In-situ single-wavelength fast-nulling ellipsometric measurements on CdTe-Cd 1-x Mn x Te quantum well and superlattice structures grown by pulsed-laser evaporation and epitaxy

Author(s):  
Hue X. Tran ◽  
James D. Leslie ◽  
Steve Buchanan ◽  
Jan J. Dubowski
1992 ◽  
Vol 117 (1-4) ◽  
pp. 862-866 ◽  
Author(s):  
J.J. Dubowski ◽  
A.P. Roth ◽  
E. Deleporte ◽  
G. Peter ◽  
Z.C. Feng ◽  
...  

2019 ◽  
Vol 6 (8) ◽  
pp. 1707-1716 ◽  
Author(s):  
Wiley A. Dunlap-Shohl ◽  
E. Tomas Barraza ◽  
Andrew Barrette ◽  
Seyitliyev Dovletgeldi ◽  
Gamze Findik ◽  
...  

RIR-MAPLE enables thin-film deposition of organic–inorganic materials with tunable synergistic photophysics.


1992 ◽  
Vol 285 ◽  
Author(s):  
D. Labrie ◽  
J.J. Dubowski

ABSTRACTPiezoreflectance and photoreflectance spectroscopies have been used to investigate the electronic properties of CdTe-Cd1-xMnxTe (x − 0.10) multiple quantum well and superlattice structures grown by Pulsed Laser Evaporation and Epitaxy (PLEE). The structures with the CdTe well widths from 54Å to 245Å have been investigated. The spectra exhibit a series of signatures which are attributed to free exciton transitions occuring between the heavy-hole and light-hole bands and the upper electron subbands within the CdTe well layers. The spectra indicate that the PLEE grown structures are of an excellent quality typical of the best currently available material.


1991 ◽  
Vol 59 (13) ◽  
pp. 1591-1593 ◽  
Author(s):  
J. J. Dubowski ◽  
A. P. Roth ◽  
Z. R. Wasilewski ◽  
S. J. Rolfe

1990 ◽  
Vol 191 ◽  
Author(s):  
Ming Y. Chen ◽  
P. Terrence Murray

ABSTRACTThin films of TiO2 have been grown by pulsed laser evaporation. The films were analyzed by in-situ Auger and x-ray photoelectron spectroscopy as well as by ex-situ grazing incidence xray diffraction. Films grown at room temperature and at a pressure of 5×10minus; 3 Torr were oxygen deficient. Films grown at 500°C and higher were found to be stoichiometric TiO2.The effect of substrate temperature and evaporation conditions on film properties will be discussed.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rajiv K. Singh ◽  
J. Narayan

AbstractThe pulsed laser evaporation (PLE) technique for deposition of thin films is characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa2Cu3O7 superconducting thin films on different substrates in the temperature range of 500–650°C. At temperatures below 600–C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3-3.5 % for films deposited on (100) SrTiO3 and (100) LaA1O3 substrates. The films exhibit very high critical current densities (Jc) with maximum values exceeding 6.5 x 106 amps/cm2 for silver doped YBa2Cu3O7 films on (100) LaA1O3 substrates, and the Jc also varies anisotropically with the magnetic field.


1989 ◽  
Vol 169 ◽  
Author(s):  
C. B. Lee ◽  
R. Prasad ◽  
A. K. Singh ◽  
S. Sharan ◽  
R. K. Singh ◽  
...  

AbstractExcellent quality epitaxial and textured superconducting HoBa2Cu307.x (Ho 123) thin films have been fabricated on lattice matched (100) KTaO3 and (100) LaAlO3, and lattice mismatched (100) MgO substrates by the pulsed laser evaporation (PLE) technique. A bulk Hol23 target was evaporated using nanosecond excimer laser pulses with the evaporating material depositing on a substrate maintained in the temperature range of 550‐650°C. The temperature for zero resistance for HoBa2Cu3O7_x films deposited on various substrates at 650°C varied between 85 to 89K. The epitaxial films deposited on (100) LaA103 substrates exhibited critical current densities greater than 3.5 x 106 Amps/cm2 at 77 K. The superconducting properties of the Ho 123 films were found to be similar to Y123 films.


Sign in / Sign up

Export Citation Format

Share Document