Growth of TiO2 Thin Films by Pulsed Laser Evaporation

1990 ◽  
Vol 191 ◽  
Author(s):  
Ming Y. Chen ◽  
P. Terrence Murray

ABSTRACTThin films of TiO2 have been grown by pulsed laser evaporation. The films were analyzed by in-situ Auger and x-ray photoelectron spectroscopy as well as by ex-situ grazing incidence xray diffraction. Films grown at room temperature and at a pressure of 5×10minus; 3 Torr were oxygen deficient. Films grown at 500°C and higher were found to be stoichiometric TiO2.The effect of substrate temperature and evaporation conditions on film properties will be discussed.

1999 ◽  
Vol 14 (2) ◽  
pp. 436-441 ◽  
Author(s):  
S. Logothetidis ◽  
E. I. Meletis ◽  
G. Kourouklis

In situ and ex situ spectroscopic ellipsometry (SE), Raman spectroscopy (RS), x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) have been used to study the stoichiometry and characterize TiNx thin films deposited by magnetron sputtering at various stoichiometries. In situ SE can provide parameters, such as the plasma energy, that can be utilized for monitoring of the film stoichiometry. Besides plasma energy, optical phonon position in RS was also found to be a sensitive probe of TiNx stoichiometry as detected by RS, XPS, and ex situ SE. Under these conditions, AES faces difficulties for reliable film characterization, and the complementary use of other techniques is required for determining the exact film stoichiometry.


2017 ◽  
Vol 4 (8) ◽  
pp. 170383 ◽  
Author(s):  
P. D. McNaughter ◽  
J. C. Bear ◽  
A. G. Mayes ◽  
I. P. Parkin ◽  
P. O'Brien

The synthesis of lead sulfide nanocrystals within a solution processable sulfur ‘inverse vulcanization’ polymer thin film matrix was achieved from the in situ thermal decomposition of lead(II) n -octylxanthate, [Pb(S 2 COOct) 2 ]. The growth of nanocrystals within polymer thin films from single-source precursors offers a faster route to networks of nanocrystals within polymers when compared with ex situ routes. The ‘inverse vulcanization’ sulfur polymer described herein contains a hybrid linker system which demonstrates high solubility in organic solvents, allowing solution processing of the sulfur-based polymer, ideal for the formation of thin films. The process of nanocrystal synthesis within sulfur films was optimized by observing nanocrystal formation by X-ray photoelectron spectroscopy and X-ray diffraction. Examination of the film morphology by scanning electron microscopy showed that beyond a certain precursor concentration the nanocrystals formed were not only within the film but also on the surface suggesting a loading limit within the polymer. We envisage this material could be used as the basis of a new generation of materials where solution processed sulfur polymers act as an alternative to traditional polymers.


2010 ◽  
Vol 518 (18) ◽  
pp. 5173-5176 ◽  
Author(s):  
J.N. Beukers ◽  
J.E. Kleibeuker ◽  
G. Koster ◽  
D.H.A. Blank ◽  
G. Rijnders ◽  
...  

2004 ◽  
Vol 845 ◽  
Author(s):  
Timothy M. Patz ◽  
Anand Doraiswamy ◽  
Roger Narayan ◽  
Nicola Menegazzo ◽  
Christine Kranz ◽  
...  

ABSTRACTWe have deposited poly (D, L lactic acid) (PDLLA) thin films using matrix assisted pulsed laser evaporation (MAPLE). FTIR spectroscopy revealed that the PDLLA had similar absorption bands to the dropcast material. X-ray photoelectron spectroscopy has shown that peaks corresponding to C-H, C-O and C=O represented 38.4, 30.1 and 31.4% of the C1s spectrum, respectively. XPS O1s analysis revealed that the O=C and O-C components make up 52 and 48 % of the O1s content. Atomic force microscopy revealed that MAPLE deposition provides smooth, continuous thin biomaterial films. These matrix assisted pulsed laser evaporation-deposited biomaterial thin films may serve to improve the implant/tissue interface.


1988 ◽  
Vol 128 ◽  
Author(s):  
P. T. Murray ◽  
M. S. Donley ◽  
N. T. McDevitt

ABSTRACTThe feasibility of growing stoichiometric thin films of BN by pulsed laser evaporation has been investigated. Films grown under high vacuum conditions were N-deficient. This result is consistent with thermodynamic calculations, which indicate that B metal formation, with concomitant N2 desorption, is energetically favored over BN formation. Stoichiometric films were grown in NH3 with substrate temperatures of 400, 500, and 1000°C. Analysis of films grown under these conditions by grazing incidence x-ray diffraction indicates the films to be highly oriented, hexagonal BN.


1988 ◽  
Vol 140 ◽  
Author(s):  
P. T. Murray ◽  
M. S. Donley ◽  
N. T. McDevitt

AbstractThe feasibility of growing stoichiometric thin films of BN by pulsed laser evaporation has been investigated. Films grown under high vacuum conditions were N-deficient. This result is consistent with thermodynamic calculations, which indicate that B metal formation, with concomitant N2 desorption, is energetically favored over BN formation. Stoichiometric films were grown in NH3 with substrate temperatures of 400, 500, and 1000ºC. Analysis of films grown under these conditions by grazing incidence x-ray diffraction indicates the films to be highly oriented, hexagonal BN.


2021 ◽  
pp. 150898
Author(s):  
Makoto Takayanagi ◽  
Takashi Tsuchiya ◽  
Shigenori Ueda ◽  
Tohru Higuchi ◽  
Kazuya Terabe

Sign in / Sign up

Export Citation Format

Share Document