Nondestructive measurement of two-dimensional refractive index profiles by deflectometry

2015 ◽  
Author(s):  
Di Lin ◽  
James R. Leger
2000 ◽  
Vol 62 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
A. A. Asatryan ◽  
P. A. Robinson ◽  
L. C. Botten ◽  
R. C. McPhedran ◽  
N. A. Nicorovici ◽  
...  

Optik ◽  
2019 ◽  
Vol 181 ◽  
pp. 231-238
Author(s):  
Jianyu Zhou ◽  
Tian Sang ◽  
Junlang Li ◽  
La Wang ◽  
Rui Wang ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 375-386 ◽  
Author(s):  
Jiankai Zhu ◽  
Xiangxian Wang ◽  
Yuan Wu ◽  
Yingwen Su ◽  
Tianxu Jia ◽  
...  

Abstract In this paper, we propose two kinds of composite structures based on the one- and two-dimensional (1D&2D) gold grating on a gold film for plasmonic refractive index sensing. The resonance modes and sensing characteristics of the composite structures are numerically simulated by the finite-difference time-domain method. The composite structure of the 1D gold semi-cylinder grating and gold film is analyzed first, and the optimized parameters of the grating period are obtained. The sensitivity and figure of merit (FOM) can reach 660RIU/nm and 169RIU−1, respectively. Then, we replace the 1D grating with the 2D gold semi-sphere particles array and find that the 2D grating composite structure can excite strong surface plasmon resonance intensity in a wider period range. The sensitivity and FOM of the improved composite structure can reach 985RIU/nm and 298 RIU−1, respectively. At last, the comparison results of the sensing performance of the two structures are discussed. The proposed structures can be used for bio-chemical refractive index sensing.


2010 ◽  
Vol 19 (03) ◽  
pp. 427-436
Author(s):  
A. MENDOZA-GARCÍA ◽  
A. ROMERO-DEPABLOS ◽  
M. A. ORTEGA ◽  
J. L. PAZ ◽  
L. ECHEVARRÍA

We have developed an analytical method to describe the optical properties of nanoparticles, whose results are in agreement with the observed experimental behavior according to the size of the nanoparticle under analysis. Our considerations to describe plasmonic absorption and dispersion are based on the combination of the two-level molecular system and the two-dimensional quantum box models. Employing the optical stochastic Bloch equations, we have determined the system's coherence, from which we have calculated expressions for the absorption coefficient and refractive index. The innovation of this methodology is that it allows us to take into account the solvent environment, which induce quantum effects not considered by classical treatments.


2016 ◽  
Vol 55 (26) ◽  
pp. 7247 ◽  
Author(s):  
Anirban Sarkar ◽  
B. N. Shivakiran Bhaktha ◽  
Sugata Pratik Khastgir

2015 ◽  
Vol 24 (03) ◽  
pp. 1550027 ◽  
Author(s):  
G. Rajalakshmi ◽  
A. Sivanantha Raja ◽  
D. Shanmuga Sundar

In this paper, the channel drop filter based on two dimensional photonic crystal is proposed. The structure is made of silicon rods with the refractive index n1 = 3.4641 which are perforated in air with refractive index n2 = 1. The simulation results are obtained using 2D finite difference time domain (FDTD) method. The photonic band gap is calculated by plane wave expansion solver method. Resonant mode of the ring resonator and the filter transmission spectrum is calculated using 2D FDTD method. Full width half maximum (FWHM) bandwidth of the filter at the output transmission spectrum from 1.508 μm to 1.512 μm is 4 nm. The quality factor of the filter is 377.5 and the proposed filter design is around 21 × 15 μm which is suitable for photonic integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document