refractive index change
Recently Published Documents


TOTAL DOCUMENTS

550
(FIVE YEARS 93)

H-INDEX

36
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 273
Author(s):  
Jie Jiang ◽  
Nan Zhang ◽  
Rui Min ◽  
Xin Cheng ◽  
Hang Qu ◽  
...  

This review discusses recent achievements on grating fabrications in polymer optical fibers doped with photosensitive materials. First, different photosensitive dopants in polymer optical fibers (POFs) are summarized, and their refractive index change mechanisms are discussed. Then, several different doping methods to fabricate the photosensitive POFs are presented. Following that, the principles of gratings, including standard fiber Bragg gratings (FBGs), tilted fiber Bragg gratings (TFBGs), chirped fiber Bragg gratings (CFBGs), phase-shifted fiber Bragg gratings (PSFBGs), and long period fiber gratings (LPFGs), are reported. Finally, fabrications of different gratings based on photosensitive POFs in the last 20 years are reported. We present our article clearly and logically, so that it will be helpful for researchers to explore a broad perspective on this proposed topic. Overall, the content provides a comprehensive overview of photosensitive POF fabrications and grating inscriptions in photosensitive POFs, including previous breakthroughs and recent advancements.


2022 ◽  
Author(s):  
Sandro Rao ◽  
Elisa D Mallemace ◽  
Maurizio Casalino ◽  
Giuseppe Cocorullo ◽  
Lakhdar Dehimi ◽  
...  

Abstract The temperature-dependent optical properties of silicon carbide (SiC), such as refractive index and reflectivity, have been used for a direct monitoring of the junction temperature of a power MOSFET. In particular, the optical response of a 4H-SiC MOSFET-integrated Fabry-Perot cavity to temperature changes has been investigated through parametric optical simulations at the wavelength of λ=450 nm. The reflected optical power exhibited oscillatory patterns caused by the multiple beam interference for which the MOSFET epilayer, between the gate-oxide and the doped 4H-SiC substrate, acts as a Fabry-Perot etalon. These results were used to calculate the refractive index change and, therefore, the optical phase shift of ∆φ= π/2 corresponding to a temperature variation that can be considered as a warning for the device “health”. In practical applications, the periodic monitoring of the optic spectrum at the interferometric structure output gives an essential information about the device operating temperature condition that, for high power operations, may lead to device damages or system failure.


Author(s):  
N. Hernández ◽  
R. A. López-Doria ◽  
I. E. Rivera ◽  
M. R. Fulla

Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Yang Yang ◽  
Yin Xu ◽  
Dongmei Huang ◽  
Feng Li ◽  
Yue Dong ◽  
...  

Acousto-optic modulation (AOM) is regarded as an effective way to link multi-physical fields on-chip. We propose an on-chip AOM scheme based on the thin-film lithium niobate (TFLN) platform working at the higher-order TE1 mode, rather than the commonly used fundamental TE0 mode. Multi-physical field coupling analyses were carried out to obtain the refractive index change of the optical waveguide (>6.5×10−10 for a single phonon) induced by the enhanced acousto-optic interaction between the acoustic resonator mode and the multimode optical waveguide. By using a Mach-Zehnder interferometer (MZI) structure, the refractive index change is utilized to modulate the output spectrum of the MZI, thus achieving the AOM function. In the proposed AOM scheme, efficient mode conversion between the TE0 and TE1 mode is required in order to ensure that the AOM works at the higher-order TE1 mode in the MZI structure. Our results show that the half-wave-voltage-length product (VπL) is <0.01 V·cm, which is lower than that in some previous reports on AOM and electro-optic modulation (EOM) working at the fundamental TE0 mode (e.g., VπL > 0.04 V·cm for AOM, VπL > 1 V·cm for EOM). Finally, the proposed AOM has lower loss when compared with EOM because the electrode of the AOM can be placed far from the optical waveguide.


2021 ◽  
Vol 10 (36) ◽  
pp. 108-109
Author(s):  
Isabella Oliveira Silva ◽  
Rafael Harduim Cardoso ◽  
Carlos Renato Zacharias ◽  
Sheila Garcia ◽  
Carla Holandino

Euphorbia tirucalli Lineu (Aveloz) belongs to the family Euphorbiaceae and is used in the treatment of cancer and warts. Some studies have reported that phorbol esters are the active principles responsible for the antitumor activity of Aveloz. The production of these molecules occurs in greater quantity in May, during the morning. This study aimed to evaluate whether the physico-chemical parameters of Aveloz homeopathic aqueous solutions such as pH, electrical conductivity and refractive index change due to storage time. Such parameters were measured regularly for 180 days. All solutions were prepared according to the method of grinding with lactose and subsequent dissolution in aqueous medium, as described in the Brazilian Homeopathic Pharmacopoeia, using as starting point the Aveloz latex collected in May. Homeopathic aqueous solutions containing only lactose were also prepared and evaluated as a control group. The potencies that were analyzed for electrical conductivity, pH and refractive index were: 4cH, 7cH, 9cH, 12cH, 14cH, 15cH, 29cH, 30cH. As a result, we found out that there was only statistical difference (p=0.035) in electrical conductivity between the homeopathic solutions containing Aveloz and the homeopathic solutions without Aveloz, when 15cH potency was compared. We also observed that the electrical conductivity increased with the aging of the solutions but is not directly related to the pH or the refractive index of the solutions, indicating that the aging process may alter the electrical conductivity of the homeopathic medicines. The presence of gas inside the glass that stores these solutions may affect the electrical conductivity measurements. Finally, no statistically significant difference was observed (p> 0.05) in the pH and refractive index.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 537
Author(s):  
Vincenzo Caligiuri ◽  
Antonio De Luca

Hydrogen (H2) sensing is crucial for modern energy storage technology, which looks to hydrogen as the most promising alternative to fossil fuels. In this respect, magnesium (Mg) offers unique possibilities, since magnesium and hydrogen easily undergo a reversible hydrogenation reaction where Mg reversibly converts into MgH2. From an optical point of view, this process produces an abrupt refractive index change, which can be exploited for sensing applications. To maximize this opportunity, we envision an architecture composed of two Ag/ITO/Mg metal/dielectric resonators facing each other and displaced by 200 nm of vacuum. This structure forms a so-called Epsilon-Near-Zero (ENZ) multi-cavity resonator, in which the two internal Mg layers, used as tunneling coupling metals, are accessible to environmental agents. We demonstrate that the hydrogenation of the two Mg layers leads to substantial changes in the strong coupling between the cavities composing the entire resonator, with a consequent abrupt modification of the spectral response, thus enabling the sensing mechanism. One of the main advantages of the proposed system with respect to previous research is that the proposed multilayered architecture avoids the need for lithographic processes. This feature makes the proposed architecture inexpensive and wafer-to-chip scalable, considering that each kind of substrate from common glass to silicon can be used. Therefore, our sensing architecture offers great promise for applications in embedded H2 sensors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Arba-Mosquera ◽  
Luise Krüger ◽  
Pascal Naubereit ◽  
Simas Sobutas ◽  
Shwetabh Verma ◽  
...  

Abstract A method to determine the optimum laser parameters for maximizing laser induced refractive index change (LIRIC) while avoiding exceeding the damage threshold for different materials with high water content (in particular, polymers such as hydrogels or the human cornea) is proposed. The model is based upon two previous independent models for LIRIC and for laser induced optical breakdown (LIOB) threshold combined in a simple manner. This work provides qualitative and quantitative estimates for the parameters leading to a maximum LIRIC effect below the threshold of LIOB.


2021 ◽  
Author(s):  
AJAY PRATAP SINGH GAHLOT ◽  
Ayushi Paliwal ◽  
Avinashi Kapoor

Abstract This work includes the exploitation of laboratory-assembled SPR technique for the application of gas sensor at room temperature. The refractive index change at the interface of ZnO/Polypyrrole with adsorption of gases (NO2 and NH3) is the basis of SPR gas sensor. The theoretical simulations were done to find out the optimum thickness of ZnO and Polypyrrole composite films for sharp SPR reflectance values. Theoretical SPR curves obtained by changing the value of thickness of Gold nanoparticles film and incident wavelength are also presented in the manuscript. Experimental studies were done to validate the theoretical studies and discussion were done about the interaction of NH3 gas with prism/Au/ZnO/Polypyrrole system. Here, ZnO/Polypyrrole multilayer structure is the sensing layer to develop highly efficient SPR based NH3 gas sensor. The outcome of these results validate the significance of SPR technique for application of interaction of surface adsorbed analytes, with the interface of dielectrics and sensing material.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7615
Author(s):  
Meng-Chi Li ◽  
Kai-Ren Chen ◽  
Chien-Cheng Kuo ◽  
Yu-Xen Lin ◽  
Li-Chen Su

The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity to the refractive index change. However, currently, the optical phase cannot be measured directly because of its high frequency; therefore, investigators usually have to use complicated techniques for the extraction of phase information. In this study, we propose a simple and effective strategy for measuring the SPR phase shift based on phase-shift interferometry. In this system, the polarization-dependent interference signals are recorded simultaneously by a pixelated polarization camera in a single snapshot. Subsequently, the phase information can be effortlessly acquired by a phase extraction algorithm. Experimentally, the proposed phase-sensitive SPR sensor was successfully applied for the detection of small molecules of glyphosate, which is the most frequently used herbicide worldwide. Additionally, the sensor exhibited a detection limit of 15 ng/mL (0.015 ppm). Regarding its simplicity and effectiveness, we believe that our phase-sensitive SPR system presents a prospective method for acquiring phase signals.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1362
Author(s):  
Qisong Li ◽  
Xuran Dai ◽  
Haosong Shi ◽  
Yi Liu ◽  
Long Zhang

Herein, we report a novel optical glass material, fluoroaluminate (AlF3) glass, with excellent optical transmittance from ultraviolet to infrared wavelength ranges, which provides more options for application in optical devices. Based on its performance, the phase-type Fresnel zone plate (FZP) by ultraviolet femtosecond (fs) laser-inscribed lithography is achieved, which induces the refractive index change by fs-laser tailoring. The realization of ultraviolet fs-laser fabrication inside glass can benefit from the excellent optical performance of the AlF3 glass. Compared with traditional surface-etching micro-optical elements, the phase-type FZP based on AlF3 glass exhibits a clear and well-defined geometry and presents perfect environmental suitability without surface roughness problems. Additionally, optical focusing and multi-wavelength imaging can be easily obtained. Phase-type FZP embedded in AlF3 glass has great potential applications in the imaging and focusing in glass-integrated photonics, especially for the ultraviolet wavelength range.


Sign in / Sign up

Export Citation Format

Share Document