Detection of rhodamine 6G in blood and urine using combination of surface-enhanced Raman spectroscopy and liquid-liquid extraction

2017 ◽  
Author(s):  
Victoria V. Shalabay ◽  
Natalia E. Markina ◽  
Victor V. Galushka ◽  
Andrey M. Zakharevich ◽  
Alexey V. Markin ◽  
...  
2019 ◽  
Vol 74 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Awatef Ouhibi ◽  
Maroua Saadaoui ◽  
Nathalie Lorrain ◽  
Mohammed Guendouz ◽  
Noureddine Raouafi ◽  
...  

In this work, we combined a hierarchical nano-array effect of silicon nanowires (SiNWs) with a metallic surface of silver nanoparticles (AgNPs) to design a surface-enhanced Raman spectroscopy (SERS) scattering substrate for sensitive detection of Rhodamine 6G (R6G) which is a typical dye for fluorescence probes. The SiNWs were prepared by Metal-Assisted Chemical Etching (MACE) of n-Si (100) wafers. The Doehlert design methodology was used for planning the experiment and analyzing the experimental results. Thanks to this methodology, the R6G SERS response has been optimized by studying the effects of the silver nitrate concentration, silver nitrate and R6G immersion times and their interactions. The immersion time in R6G solution stands out as the most of influential factor on the SERS response.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Quynh-Ngan Luong ◽  
Tran Cao Dao ◽  
Thi Thu Vu ◽  
Manh Cuong Nguyen ◽  
Nhu Duong Nguyen

Surface-enhanced Raman spectroscopy (SERS) is increasingly being used as a method for detecting traces of contaminants in a variety of specimens. In order to maximize SERS’s performance, the most important thing is to have highly active SERS substrates. In this report, we present a simple method for synthesizing silver nanodendrites (AgNDs) on the surface of a copper (Cu) plate using chemical deposition method. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the Cu surface. These AgNDs are distributed evenly across the entire Cu surface with a relatively thick density. The prepared AgNDs were applied as SERS substrates for detecting Rhodamine 6G (R6G) in chili powders. The results showed that, using the prepared AgNDs substrates, as low as 10−10 M R6G in chili powders can be detected. This demonstrates the applicability of fabricated AgNDs as a highly active SERS substrate.


Sign in / Sign up

Export Citation Format

Share Document