Application of multi-scale segmentation algorithms for high resolution remote sensing image

Author(s):  
Tingting Zhou ◽  
Lingjia Gu ◽  
Ruizhi Ren
2019 ◽  
Vol 11 (5) ◽  
pp. 482 ◽  
Author(s):  
Qi Bi ◽  
Kun Qin ◽  
Han Zhang ◽  
Ye Zhang ◽  
Zhili Li ◽  
...  

Building extraction plays a significant role in many high-resolution remote sensing image applications. Many current building extraction methods need training samples while it is common knowledge that different samples often lead to different generalization ability. Morphological building index (MBI), representing morphological features of building regions in an index form, can effectively extract building regions especially in Chinese urban regions without any training samples and has drawn much attention. However, some problems like the heavy computation cost of multi-scale and multi-direction morphological operations still exist. In this paper, a multi-scale filtering building index (MFBI) is proposed in the hope of overcoming these drawbacks and dealing with the increasing noise in very high-resolution remote sensing image. The profile of multi-scale average filtering is averaged and normalized to generate this index. Moreover, to fully utilize the relatively little spectral information in very high-resolution remote sensing image, two scenarios to generate the multi-channel multi-scale filtering index (MMFBI) are proposed. While no high-resolution remote sensing image building extraction dataset is open to the public now and the current very high-resolution remote sensing image building extraction datasets usually contain samples from the Northern American or European regions, we offer a very high-resolution remote sensing image building extraction datasets in which the samples contain multiple building styles from multiple Chinese regions. The proposed MFBI and MMFBI outperform MBI and the currently used object based segmentation method on the dataset, with a high recall and F-score. Meanwhile, the computation time of MFBI and MBI is compared on three large-scale very high-resolution satellite image and the sensitivity analysis demonstrates the robustness of the proposed method.


2017 ◽  
Vol 76 (13) ◽  
pp. 15105-15122 ◽  
Author(s):  
Ai Zhu Zhang ◽  
Gen Yun Sun ◽  
Si Han Liu ◽  
Zhen Jie Wang ◽  
Peng Wang ◽  
...  

Author(s):  
Yonghong Jia ◽  
Mingting Zhou ◽  
Ye Jinshan

The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.


2019 ◽  
Vol 11 (21) ◽  
pp. 2504 ◽  
Author(s):  
Jun Zhang ◽  
Min Zhang ◽  
Lukui Shi ◽  
Wenjie Yan ◽  
Bin Pan

Scene classification is one of the bases for automatic remote sensing image interpretation. Recently, deep convolutional neural networks have presented promising performance in high-resolution remote sensing scene classification research. In general, most researchers directly use raw deep features extracted from the convolutional networks to classify scenes. However, this strategy only considers single scale features, which cannot describe both the local and global features of images. In fact, the dissimilarity of scene targets in the same category may result in convolutional features being unable to classify them into the same category. Besides, the similarity of the global features in different categories may also lead to failure of fully connected layer features to distinguish them. To address these issues, we propose a scene classification method based on multi-scale deep feature representation (MDFR), which mainly includes two contributions: (1) region-based features selection and representation; and (2) multi-scale features fusion. Initially, the proposed method filters the multi-scale deep features extracted from pre-trained convolutional networks. Subsequently, these features are fused via two efficient fusion methods. Our method utilizes the complementarity between local features and global features by effectively exploiting the features of different scales and discarding the redundant information in features. Experimental results on three benchmark high-resolution remote sensing image datasets indicate that the proposed method is comparable to some state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document