Comparison of total water vapor content obtained from TOVS-NOAA with radio-soundings data in Canary Islands zone

Author(s):  
M. Arbelo ◽  
F. J. Exposito ◽  
Felix Herrera
2013 ◽  
Vol 26 (4) ◽  
pp. 281-284 ◽  
Author(s):  
K. M. Firsov ◽  
T. Yu. Chesnokova ◽  
E. V. Bobrov ◽  
I. I. Klitochenko

2021 ◽  
Vol 9 (2) ◽  
pp. 107-111
Author(s):  
C. Purna Chand ◽  
M. V. Raob ◽  
K. V.S.R. Prasad

The dew point temperature is related to the total water vapor content available in the atmosphere column. In this study, Water Vapor Content (WVC) from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Relative humidity from Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) buoy data has been utilized to make a relationship between satellite measured WVC and Dew point temperature. This study focuses on the development of an algorithm to estimate the surface dew point temperature from satellite-based WVC. Regression coefficients are established using 9-years (2004-2012) data of Dew point Temperature computed from Relative humidity and satellite measured WVC. 1594 data points are observed weekly, mean monthly collocated data points are considered to examine the relationship between Dew point temperature and WVC. 


2014 ◽  
Vol 6 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Chun Chang ◽  
Ping Feng ◽  
Fawen Li ◽  
Yunming Gao

Based on the Haihe river basin National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data from 1948 to 2010 and the precipitation data of 53 hydrological stations during 1957–2010, this study analyzed the variation of water vapor content and precipitation, and investigated the correlation between them using several statistical methods. The results showed that the annual water vapor content decreased drastically from 1948 to 2010. It was comparatively high from the late 1940s to the late 1960s and depreciated from the early 1970s. From the southeast to the northwest of the Haihe river basin, there was a decrease in water vapor content. For vertical distribution, water vapor content from the ground to 700 hPa pressure level accounted for 72.9% of the whole atmospheric layer, which indicated that the water vapor of the Haihe river basin was mainly in the air close to the ground. The precipitation in the Haihe river basin during 1957–2010 decreased very slightly. According to the correlation analysis, the precipitation and water vapor content changes showed statistically positive correlation, in addition, their break points were both in the 1970s. Furthermore, the high consistency between the precipitation efficiency and precipitation demonstrates that water vapor content is one of the important factors in the formation of precipitation.


Sign in / Sign up

Export Citation Format

Share Document