Degeneracy and splitting of defect modes in one-dimensional symmetric photonic crystal

Author(s):  
Yan-ling Han ◽  
Hong Wang ◽  
Yang Li ◽  
Kang Han ◽  
Bi-yuan Jian ◽  
...  
2014 ◽  
Vol 1035 ◽  
pp. 437-441
Author(s):  
Jin Xia Gao ◽  
Ji Jiang Wu

One-dimensional dielectric photonic crystals (PCs) with complex substitutional defect layers, consisting of superconducting (SC) and dielectric sublayers are theoretically studied. The influence of the incidence angle on the photonic gap spectra is theoretically analyzed. The pronounced difference in the transmittivity spectra of the PCs with right-handed (RH) and left-handed (LH) positions of the superconducting defect sublayer with respect to the dielectric defect sublayer is demonstrated. It is observed that, for the case of RH SC defect sublayer, the position of the defect mode and the transmittivity at the defect mode frequency strongly depend on the thickness of the superconducting sublayer as well as on the temperature. But the defect modes of the PCs with LH SC defect sublayer are nearly invariant upon the change of the thickness of the superconducting sublayer and the temperature.


2007 ◽  
Vol 24 (3) ◽  
pp. 297-302 ◽  
Author(s):  
V. G. Arkhipkin ◽  
V. A. Gunyakov ◽  
S. A. Myslivets ◽  
V. Ya. Zyryanov ◽  
V. F. Shabanov

2012 ◽  
Vol 02 (03) ◽  
pp. 230-236 ◽  
Author(s):  
Sanjeev K. Srivastava ◽  
Maitreyi Upadhyay ◽  
Suneet K. Awasthi ◽  
S. P. Ojha

Optics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 284-291
Author(s):  
Victoria Paige Stinson ◽  
Serang Park ◽  
Micheal McLamb ◽  
Glenn Boreman ◽  
Tino Hofmann

One-dimensional photonic crystals composed of alternating layers with high- and low-density were fabricated using two-photon polymerization from a single photosensitive polymer for the infrared spectral range. By introducing single high-density layers to break the periodicity of the photonic crystals, a narrow-band defect mode is induced. The defect mode is located in the center of the photonic bandgap of the one-dimensional photonic crystal. The fabricated photonic crystals were investigated using infrared reflection measurements. Stratified-layer optical models were employed in the design and characterization of the spectral response of the photonic crystals. A very good agreement was found between the model-calculated and measured reflection spectra. The geometric parameters of the photonic crystals obtained as a result of the optical model analysis were found to be in good agreement with the nominal dimensions of the photonic crystal constituents. This is supported by complimentary scanning electron microscope imaging, which verified the model-calculated, nominal layer thicknesses. Conventionally, the accurate fabrication of such structures would require layer-independent print parameters, which are difficult to obtain with high precision. In this study an alternative approach is employed, using density-dependent scaling factors, introduced here for the first time. Using these scaling factors a fast and true-to-design method for the fabrication of layers with significantly different surface-to-volume ratios. The reported observations furthermore demonstrate that the location and amplitude of defect modes is extremely sensitive to any layer thickness non-uniformities in the photonic crystal structure. Considering these capabilities, one-dimensional photonic crystals engineered with defect modes can be employed as narrow band filters, for instance, while also providing a method to quantify important fabrication parameters.


2012 ◽  
Vol 586 ◽  
pp. 206-209 ◽  
Author(s):  
Xin Xing Yin ◽  
Ying Mao Xie ◽  
Hui Zhen Wang ◽  
Rui Lin Xiao

The 5CB liquid crystal as defects will be introduced to one dimensional photonic crystal, taking advantage of temperature property of liquid crystal refractive index, the transmission spectrum of one dimensional liquid crystal defect photonic crystal defect modes was researched by the transfer matrix method(TMM). The numerical results indicated that when the temperature went up, one dimensional liquid crystal defect photonic crystal defect modes removed towards the long wavelength. When the temperature increased from 273k to 320k, the defect modes wavelength from 5121nm drifted to 5508nm, the wavelength shift was 387nm and the maximum of temperature sensitivity was 10.85nm/K, it was also observed that the temperature sensitivity decreased as the temperature increased.


Sign in / Sign up

Export Citation Format

Share Document