Stress change detection from application of a stretching model to coda wave measurements

Author(s):  
Hanyu Zhan ◽  
Hanwan Jiang ◽  
Chenxu Zhuang ◽  
Ruinian Jiang ◽  
Jinquan Zhang
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4899
Author(s):  
Hanwan Jiang ◽  
Hanyu Zhan ◽  
Ziwei Ma ◽  
Ruinian Jiang

The intrinsic heterogeneity property of concrete causes strong multiple scatterings during wave propagation, forming coda wave that follows very complex trajectories. As a superposition of multiply scattered waves, coda wave shows great sensitivity to subtle changes, but meanwhile lose spatial resolution. To make use of its sensitivity and turn the limitation into advantage, this paper presents an experimental study of three-dimensionally imaging local changes in concrete by application of inverse algorithms to coda wave measurements. Load tests are performed on a large reinforced concrete beam that contains multiple pre-existing millimeter-scale cracks in order to match real life situation. The joint effects of cracks and stresses on coda waves have been monitored using a network of fixed transducers placed at the surface. The global waveform decorrelations and velocity variations are firstly quantified through coda wave interferometry technique. Subsequently, two inverse algorithms are independently applied to map the densities of changes at each localized position. Using this methodology, the stress changes and subtle cracks in the concrete beam are detected and imaged for both temporal and spatial domains.


2006 ◽  
Vol 27 (4) ◽  
pp. 218-228 ◽  
Author(s):  
Paul Rodway ◽  
Karen Gillies ◽  
Astrid Schepman

This study examined whether individual differences in the vividness of visual imagery influenced performance on a novel long-term change detection task. Participants were presented with a sequence of pictures, with each picture and its title displayed for 17  s, and then presented with changed or unchanged versions of those pictures and asked to detect whether the picture had been changed. Cuing the retrieval of the picture's image, by presenting the picture's title before the arrival of the changed picture, facilitated change detection accuracy. This suggests that the retrieval of the picture's representation immunizes it against overwriting by the arrival of the changed picture. The high and low vividness participants did not differ in overall levels of change detection accuracy. However, in replication of Gur and Hilgard (1975) , high vividness participants were significantly more accurate at detecting salient changes to pictures compared to low vividness participants. The results suggest that vivid images are not characterised by a high level of detail and that vivid imagery enhances memory for the salient aspects of a scene but not all of the details of a scene. Possible causes of this difference, and how they may lead to an understanding of individual differences in change detection, are considered.


Author(s):  
Mitchell R. P. LaPointe ◽  
Rachael Cullen ◽  
Bianca Baltaretu ◽  
Melissa Campos ◽  
Natalie Michalski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document