stress change
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 77)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 50 (3) ◽  
pp. 20210457
Author(s):  
Wanhua Liang ◽  
James Pineault ◽  
F. Albrecht Conle ◽  
Timothy H. Topper

Author(s):  
Hiep Xuan Trinh ◽  
Ngoc Bich Nguyen ◽  
Sinh Truong Nguyen

This paper presents the effect of water’s temperature on the friction properties of materials used in marine propeller sliding bearing. Copper-Rubber and Copper-Capron, two common pairs of material in the shaft water-lubricated polymer bearing were chosen to conduct experiments with the pin-on-disc model. Various conditions including water temperature, stress, and sliding velocity were examined, their results showed that in the range 30 °C to 100 °C of water temperature, the frictional coefficient of both friction pairs were unchanged under the small stress and low sliding velocity (0.3 MPa and 0.9 m/s). While in the case of stress and sliding velocity were both high (0.6 MPa and 1.5 m/s), it increased significantly in a certain transition temperature range. This temperature range of the pair Copper-Rubber and Copper-Capron is 50 °C to 60 °C and 80 °C to 90 °C, respectively. The experiment’s results also pointed out that in these transition temperature ranges, the friction coefficient of two pairs was slightly influenced by the change in sliding velocity, whereas the stress change has an important impact on its values. Nonetheless, when the water temperature was below the transition range, the effect of the stress change on the friction coefficient was not significant. Thus, high water temperature is the main reason for the friction coefficient’s increase rather than the increase of the stress. This work is expected to broaden the understanding of the friction behavior of the water-lubricated polymer bearing.


2021 ◽  
pp. 63-69
Author(s):  
Anatolii Kryuchkov ◽  
Anatolii Bakhtyn

Purpose. The purpose of this study is to establish analytical patterns for predicting changes in stress and energy density spent on the destruction of rocks according to experimental studies. To solve this purpose in the article were set the following scientific problems: 1) analytical description of the dependence of the stress σij on the main deformation εij; 2) establishment of calculation parameters that are included in the analytical patterns; 3) analytical description and study of fracture energy density curves. Methodology. In the course of analytical and experimental researches of full diagrams of deformation of rocks the mathematical model of dependence of the stress on the deformation is developed. Physico-mechanical processes of all characteristic sections of the complete deformation diagram were also analyzed and described. Analysis of the resulting curve showed that the rock mass and elements of the lithosphere are not perfectly elastic or plastic objects. Along with the elastic ones, plastic ones are always present to one degree or another. The integration of the obtained analytical expression σ11 = f(ε11) allowed to establish the volumetric energy density spent on the destruction of the rock sample under the action of external load. The maximum activation energy for the considered rock is 0.67 MJ/m3. A comparison of the experimental and calculated values of the energy dependence u(ε1) shows a coincidence over almost the entire range of deformation changes (ε11 = 0..0.04). Findings. The study of rock samples at hard stress allowed to obtain a complete deformation characteristics of the rock. The curve that surrounds the deformation cycles (1) combines pre-boundary, boundary, extremal modes of deformation and destruction of rocks. Equation (4) allows us to establish that the destruction can occur at different values of energy density U(ε). Originality. An analytical description of the energy diagram of deformation and a complete diagram of stress change in the form of a single dependence, which takes into account the boundary and extremal areas, was developed in the work. In contrast to the method of piecewise linear approximation, this approach corresponds to the physics of the process and reduces errors in calculations. Practical implications. Theoretical and experimental analysis of the obtained energy fracture diagrams and complete stress change diagrams in rocks allows to estimate the bearing capacity of a rock mass or other solid body. This allows you to predict critical values of stresses and external loads to prevent failure in a timely manner.


2021 ◽  
Vol 7 (4) ◽  
pp. 593-600
Author(s):  
Matheus Souisa ◽  
Sisca Madonna Sapulete

The Tehoru earthquake occurred due to the release of stress in rocks. There is a release of energy as an earthquake as a result of the rock elasticity limit has been exceeded because the rock is no longer able to withstand the stress. One method to determine the distribution of earthquake stress is the Coulomb stress change method. The study aimed to determine the DCS of the Tehoru earthquake, Seram Island, and the effect of the main earthquake stress release on aftershocks.  The research results show that the DCS distribution of the Tehoru June 16, 2021 earthquake is shown with negative lobes and positive lobes. The negative lobe is found in an area that is perpendicular to the fault plane and has been identified as having experienced relaxation, so there may be still aftershocks with stress values ranging from (0.0 – 0.3) bar. The dominant positive lobe occurs next to the southern end of the fault plane, too much located in the area of increasing Coulomb stress with values ranging from (0.2 - 0.6) bar


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cheng Li ◽  
Yu Hui Huang ◽  
Jian-Jun Wang ◽  
Bo Wang ◽  
Yong Jun Wu ◽  
...  

AbstractSolid-state refrigeration which is environmentally benign has attracted considerable attention. Mechanocaloric (mC) materials, in which the phase transitions can be induced by mechanical stresses, represent one of the most promising types of solid-state caloric materials. Herein, we have developed a thermodynamic phenomenological model and predicted extraordinarily large elastocaloric (eC) strengths for the (111)-oriented metal-free perovskite ferroelectric [MDABCO](NH4)I3 thin-films. The predicted room temperature isothermal eC ΔSeC/Δσ (eC entropy change under unit stress change) and adiabatic eC ΔTeC/Δσ (eC temperature change under unit stress change) for [MDABCO](NH4)I3 are −60.0 J K−1 kg−1 GPa−1 and 17.9 K GPa−1, respectively, which are 20 times higher than the traditional ferroelectric oxides such as BaTiO3 thin films. We have also demonstrated that the eC performance can be improved by reducing the Young’s modulus or enhancing the thermal expansion coefficient (which could be realized through chemical doping, etc.). We expect these discoveries to spur further interest in the potential applications of metal-free organic ferroelectrics materials towards next-generation eC refrigeration devices.


Author(s):  
Dorcas S. Eyinla

AbstractHeat extraction from geothermal reservoir by circulating cold water into a hot rock requires an amount of fluid pressure, which is capable of inducing fault opening. Although stress change promotes the potential of fault failure and reactivation, the rate at which fluid pressurization within the fault zone generates variations in pore pressure as fault geometry changes during geothermal energy production have not been thoroughly addressed to include the effects of joint orientation. This study examines how different fault/joint models result in different tendency of injection-induced shear failure, and how this could influence the production rate. Here, a numerical simulation method is adopted to investigate the thermo-hydro-mechanical (THM) response of the various fault/joint models during production in a geothermal reservoir. The results indicate that pore pressure evolution has a direct relationship with the evolution of production rate for the three joint models examined, and the stress sensitivity of the individual fault/joint model also produced an effect on the production rate. Changing the position of the injection well revealed that the magnitude of shear failure on the fault plane could be controlled by the hydraulic diffusivity of fluid pressure, and the production rate is also influenced by the magnitude of stress change at the injection and production wells. Overall, the location of the injection well along with the fault damage zone significantly influenced the resulting production rate, but a more dominating factor is the joint orientation with respect to the maximum principal stress direction. Thus, the rate of thermal drawdown is affected by pore pressure elevation and stress change while the fault permeability and the production rate are enhanced when the joint’s frictional resistance is low.


Sign in / Sign up

Export Citation Format

Share Document