pitch change
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Adele Cherise Hogan

<p>Visual motion prediction is essential for making key judgements about objects in the environment. These judgements are typically investigated using a time-to-contact (TTC) task, in which an object travels along a straight trajectory and disappears behind an occluder. Participants make a response coinciding with the moment the object would have contacted a visual landmark. The assumption is that the motion continues behind the occluder. This task is used to measure how we perceive and predict the arrival-time of objects. The addition of sound to TTC tasks generally enhances visual judgements. One characteristic which may affect how sound influences visual motion judgements is pitch. A rising pitch is associated with speeded motion and a falling pitch with slowed motion. Pitch change could therefore lead to biases in visual motion judgements; however, this has not yet been investigated. Furthermore, TTC tasks can utilise horizontal or vertical motion. In vertical motion, an additional variable that may be critical for TTC estimations is gravity. It is postulated that humans possess an internal model of gravity that allows us to make accurate predictions for downward motion. This model assumes faster downward than upward motion. However, this model can be wrongfully applied in constant speed tasks, producing faster speed estimations for downward stimuli when there is no acceleration. Therefore, vertical motion could lead to additional biases in visual motion judgements.  This thesis investigated whether pitch and gravity could affect the imagined speed of an object under occlusion. Specifically, a rising pitch was hypothesised to produce speeded predicted motion and falling pitch, slowed predicted motion. I investigated the influence of pitch change in vertical and horizontal planes. I also investigated two different aspects of pitch change, since dynamic pitch is a novel addition to TTC paradigms. Experiment 1A explored gradual pitch change and Experiment 1B used sudden pitch change. The hypothesised pitch effects were observed for a gradual, but not a sudden pitch change. However, a gravity effect was observed across both Experiments 1A and 1B, suggesting the presence of sound does not moderate this effect.  I also examined the cortical substrates of the audio-visual TTC task components by using transcranial magnetic stimulation (TMS) in Experiment 2. The superior temporal sulcus (STS) was targeted in this experiment, as it has been implicated in audio-visual integration. TMS causes neuronal inhibition, and as such, can be used to determine whether an area is involved in a task. If the STS is responsible for audio-visual integration in a TTC task, then TMS to the STS should disrupt the pitch effects evidenced in Experiment 1A. That is, a change in pitch should have no effect on TTC judgements compared to a constant tone. This result was evident only for rising tones, suggesting the involvement of the STS in the generating speeded predicted motion. The pitch effects observed in Experiment 1A and Experiment 2 implicate pitch in the production of biases in motion imagery for visual motion judgements, particularly for visual stimuli under occlusion.</p>


2021 ◽  
Author(s):  
◽  
Adele Cherise Hogan

<p>Visual motion prediction is essential for making key judgements about objects in the environment. These judgements are typically investigated using a time-to-contact (TTC) task, in which an object travels along a straight trajectory and disappears behind an occluder. Participants make a response coinciding with the moment the object would have contacted a visual landmark. The assumption is that the motion continues behind the occluder. This task is used to measure how we perceive and predict the arrival-time of objects. The addition of sound to TTC tasks generally enhances visual judgements. One characteristic which may affect how sound influences visual motion judgements is pitch. A rising pitch is associated with speeded motion and a falling pitch with slowed motion. Pitch change could therefore lead to biases in visual motion judgements; however, this has not yet been investigated. Furthermore, TTC tasks can utilise horizontal or vertical motion. In vertical motion, an additional variable that may be critical for TTC estimations is gravity. It is postulated that humans possess an internal model of gravity that allows us to make accurate predictions for downward motion. This model assumes faster downward than upward motion. However, this model can be wrongfully applied in constant speed tasks, producing faster speed estimations for downward stimuli when there is no acceleration. Therefore, vertical motion could lead to additional biases in visual motion judgements.  This thesis investigated whether pitch and gravity could affect the imagined speed of an object under occlusion. Specifically, a rising pitch was hypothesised to produce speeded predicted motion and falling pitch, slowed predicted motion. I investigated the influence of pitch change in vertical and horizontal planes. I also investigated two different aspects of pitch change, since dynamic pitch is a novel addition to TTC paradigms. Experiment 1A explored gradual pitch change and Experiment 1B used sudden pitch change. The hypothesised pitch effects were observed for a gradual, but not a sudden pitch change. However, a gravity effect was observed across both Experiments 1A and 1B, suggesting the presence of sound does not moderate this effect.  I also examined the cortical substrates of the audio-visual TTC task components by using transcranial magnetic stimulation (TMS) in Experiment 2. The superior temporal sulcus (STS) was targeted in this experiment, as it has been implicated in audio-visual integration. TMS causes neuronal inhibition, and as such, can be used to determine whether an area is involved in a task. If the STS is responsible for audio-visual integration in a TTC task, then TMS to the STS should disrupt the pitch effects evidenced in Experiment 1A. That is, a change in pitch should have no effect on TTC judgements compared to a constant tone. This result was evident only for rising tones, suggesting the involvement of the STS in the generating speeded predicted motion. The pitch effects observed in Experiment 1A and Experiment 2 implicate pitch in the production of biases in motion imagery for visual motion judgements, particularly for visual stimuli under occlusion.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. Guinan ◽  
S. M. Lefler ◽  
C. A. Buchman ◽  
S. S. Goodman ◽  
J. T. Lichtenhan

AbstractA fundamental property of mammalian hearing is the conversion of sound pressure into a frequency-specific place of maximum vibration along the cochlear length, thereby creating a tonotopic map. The tonotopic map makes possible systematic frequency tuning across auditory-nerve fibers, which enables the brain to use pitch to separate sounds from different environmental sources and process the speech and music that connects us to people and the world. Sometimes a tone has a different pitch in the left and right ears, a perceptual anomaly known as diplacusis. Diplacusis has been attributed to a change in the cochlear frequency-place map, but the hypothesized abnormal cochlear map has never been demonstrated. Here we assess cochlear frequency-place maps in guinea-pig ears with experimentally-induced endolymphatic hydrops, a hallmark of Ménière’s disease. Our findings are consistent with the hypothesis that diplacusis is due to an altered cochlear map. Map changes can lead to altered pitch, but the size of the pitch change is also affected by neural synchrony. Our data show that the cochlear frequency-place map is not fixed but can be altered by endolymphatic hydrops. Map changes should be considered in assessing hearing pathologies and treatments.


2021 ◽  
Vol 10 (10) ◽  
pp. 2093
Author(s):  
Agathe Pralus ◽  
Ruben Hermann ◽  
Fanny Cholvy ◽  
Pierre-Emmanuel Aguera ◽  
Annie Moulin ◽  
...  

In the case of hearing loss, cochlear implants (CI) allow for the restoration of hearing. Despite the advantages of CIs for speech perception, CI users still complain about their poor perception of their auditory environment. Aiming to assess non-verbal auditory perception in CI users, we developed five listening tests. These tests measure pitch change detection, pitch direction identification, pitch short-term memory, auditory stream segregation, and emotional prosody recognition, along with perceived intensity ratings. In order to test the potential benefit of visual cues for pitch processing, the three pitch tests included half of the trials with visual indications to perform the task. We tested 10 normal-hearing (NH) participants with material being presented as original and vocoded sounds, and 10 post-lingually deaf CI users. With the vocoded sounds, the NH participants had reduced scores for the detection of small pitch differences, and reduced emotion recognition and streaming abilities compared to the original sounds. Similarly, the CI users had deficits for small differences in the pitch change detection task and emotion recognition, as well as a decreased streaming capacity. Overall, this assessment allows for the rapid detection of specific patterns of non-verbal auditory perception deficits. The current findings also open new perspectives about how to enhance pitch perception capacities using visual cues.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tina C. Roeske ◽  
David Rothenberg ◽  
David E. Gammon

The song of the northern mockingbird, Mimus polyglottos, is notable for its extensive length and inclusion of numerous imitations of several common North American bird species. Because of its complexity, it is not widely studied by birdsong scientists. When they do study it, the specific imitations are often noted, and the total number of varying phrases. What is rarely noted is the systematic way the bird changes from one syllable to the next, often with a subtle transition where one sound is gradually transformed into a related sound, revealing an audible and specific compositional mode. It resembles a common strategy in human composing, which can be described as variation of a theme. In this paper, we present our initial attempts to describe the specific compositional rules behind the mockingbird song, focusing on the way the bird transitions from one syllable type to the next. We find that more often than chance, syllables before and after the transition are spectrally related, i.e., transitions are gradual, which we describe as morphing. In our paper, we categorize four common modes of morphing: timbre change, pitch change, squeeze (shortening in time), and stretch (lengthening in time). This is the first time such transition rules in any complex birdsong have been specifically articulated.


Author(s):  
Pasto Juni Ansen Malau ◽  
Yohanes Suyanto

This research using pitch shifting by delay line based method which consist of two main stage. The first stage is called analysis stage (framing, windowing, pre-emphasis and de-emphasis and FFT) that can detect the value of fundamental frequency of each taganing’s gendang. Then, this fundamental frequncy from each gendang will be classified into keyboard tones. The second one is called synthesis stage that will process the fundamental frequency become a new desire signal by creat an upward pitch change or a downward pitch change by delay line based method. Result of this research is created new signals as standard tones of each taganing’s gendang. The evaluation of synthesis output is using comparation method between fudamnetal frequency value of signal output as result of synthetis stage and the fundamental frequency value of keyboard standard’s tone. From the results of the system, it can be concluded  that taganing synthesis tone have  98.87% accuration rate.


2020 ◽  
Author(s):  
Soheila Samiee ◽  
Dominique Vuvan ◽  
Esther Florin ◽  
Philippe Albouy ◽  
Isabelle Peretz ◽  
...  

AbstractThe detection of pitch changes is crucial to sound localization, music appreciation and speech comprehension, yet the brain network oscillatory dynamics involved remain unclear. We used time-resolved cortical imaging in a pitch change detection task. Tone sequences were presented to both typical listeners and participants affected with congenital amusia, as a model of altered pitch change perception.Our data show that tone sequences entrained slow (2-4 Hz) oscillations in the auditory cortex and inferior frontal gyrus, at the pace of tone presentations. Inter-regional signaling at this slow pace was directed from auditory cortex towards the inferior frontal gyrus and motor cortex. Bursts of faster (15-35Hz) oscillations were also generated in these regions, with directed influence from the motor cortex. These faster components occurred precisely at the expected latencies of each tone in a sequence, yielding a form of local phase-amplitude coupling with slower concurrent activity. The intensity of this coupling peaked dynamically at the moment of anticipated pitch changes.We clarify the mechanistic relevance of these observations in relation to behavior as, by task design, typical listeners outperformed amusic participants. Compared to typical listeners, inter-regional slow signaling toward motor and inferior frontal cortices was depressed in amusia. Also, the auditory cortex of amusic participants over-expressed tonic, fast-slow phase-amplitude coupling, pointing at a possible misalignment between stimulus encoding and internal predictive signaling. Our study provides novel insight into the functional architecture of polyrhythmic brain activity in auditory perception and emphasizes active, network processes involving the motor system in sensory integration.


2020 ◽  
Author(s):  
Linshu Zhou ◽  
Fang Liu ◽  
Tang Hai ◽  
Jun Jiang ◽  
Dongrui Man ◽  
...  

Absolute pitch (AP), a superior ability of pitch letter naming in the absence of a reference note, has long been viewed as an indicator of human musical talent and thus as evidence for the adaptationist hypothesis of music evolution. Little is known, however, whether AP possessors are superior to non-AP possessors in music processing. The present study investigated whether the AP ability facilitates musical tension processing in perceptual and experienced tasks. Twenty-one AP possessors and 21 matched non-AP possessors were tested using novel melodies in C and non-C contexts. Results indicated that the two groups provided comparable ratings of perceived and felt tension for melodies in both contexts. While AP possessors demonstrated lower accuracy with longer reaction time than non-AP possessors in naming movable solfège syllables for pitch in the pretest, their tension rating profiles showed a similar tonal hierarchy as non-AP possessors in regard to the stability of the ending tones of the melodies in both major and minor keys. Correlation analyses suggested that musical tension ratings were not significantly related to performance in pitch letter, movable solfège syllable naming, pitch change detection threshold, or pitch direction discrimination threshold for either group. These findings suggest that pitch naming abilities (either pitch letter or movable solfège syllable naming) do not benefit processing of perceived or felt musical tension, providing evidence to support the hypothesis that AP ability is not associated with advantage in music processing.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
JianRong Wang ◽  
Li Wan ◽  
Ju Zhang ◽  
Qiang Fang ◽  
Fan Yang ◽  
...  

To advance the study of lip-reading recognition in accordance with Chinese pronunciation norms, we carefully investigated Mandarin tone recognition based on visual information, in contrast to that of the previous character-based Chinese lip reading technique. In this paper, we mainly studied the vowel tonal transformation in Chinese pronunciation and designed a lightweight skipping convolution network framework (SCNet). And, the experimental results showed that the SCNet was sensitive to the more detailed description of the pitch change than that of the traditional model and achieved a better tone recognition effect and outstanding antiinterference performance. In addition, we conducted a more detailed study on the assistance of the deep texture information in lip-reading recognition. We found that the deep texture information has a significant effect on tone recognition, and the possibility of multimodal lip reading in Chinese tone recognition was confirmed. Similarly, we verified the role of the SCNet syllable tone recognition and found that the vowel and syllable tone recognition accuracy of our model was as high as 97.3%, which also showed the robustness of our proposed method for Chinese tone recognition and it can be widely used for tone recognition.


2020 ◽  
Vol 14 ◽  
Author(s):  
Zhiqiao Wang ◽  
Qingfen Hu

Abstract Previous research has found that musicians’ pitch judgments, unlike non-musicians’, are influenced by syllable names. Although non-musicians fail to identify absolute pitches, they acknowledge the direction of pitch change. The present experiment investigated whether non-musicians’ judgments of pitch change can be influenced by the direction of syllable name change. Moreover, we examined the spatial, magnitudinal and sequential nature of pitches and syllable names. Participants (N = 33) were asked to hear two successive tones sung by syllable name and to judge the direction of pitch change by pressing vertically arranged buttons. Participants’ accuracy of pitch change judging was found to be influenced by the direction of syllable name change. However, the response location was not found to interact with pitch change or syllable name change. The distance effect was found in pitches but not in syllable names. A sequence effect was found that trials with early-in-sequence syllable names were responded faster than trials with late-in-sequence syllable names. These results suggest that syllable names can influence non-musicians’ pitch judgments in a relative context. We suggest that it is the sequential order of syllable names that is the product of cultural activities that interfere with the judgment of pitch change.


Sign in / Sign up

Export Citation Format

Share Document