Reconfigurable infrared spectral imaging with phase change materials

Author(s):  
Jeong-Sun Moon ◽  
Hwa-Chang Seo ◽  
K. Kay Son ◽  
Eilam Yalon ◽  
Kang-mu Lee ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel Alves Oliveira ◽  
Igor Leonardo Gomes de Souza ◽  
Vitaly Felix Rodriguez-Esquerre

AbstractStructures absorbing electromagnetic waves in the infrared spectral region are important optical components in key areas such as biosensors, infrared images, thermal emitters, and special attention is required for reconfigurable devices. We propose a three-dimensional metal-dielectric plasmonic absorber with a layer of PCM’s (Phase Change Materials). The phase shift effects of PCMs are numerically analyzed, and it is possible to obtain a shifting control of the resonant absorption peaks between the amorphous and crystalline states using the Lorentz–Lorenz relation. By using this empirical relation, we analyzed the peak absorption shift at intermediate phases between the amorphous and the crystalline. The geometric parameters of the structure with the PCM layer in the semi-crystalline state were adjusted to exhibit strong absorption for normal incidence. The effects of the oblique incidence on the absorption for the TM and TE polarization modes were also analyzed. Our results demonstrate that PCMs have great potential for reconfigurable nanophotonic devices.


2021 ◽  
Author(s):  
Israel Alves Oliveira ◽  
I. L. Gomes Souza ◽  
V. F. Rodriguez-Esqu

Abstract Structures absorbing electromagnetic waves in the infrared spectral region are important optical components in key areas such as biosensors, infrared images and thermal emitters, and require special attention from reconfigurable devices. We propose a three-dimensional metal-dielectric plasmonic absorber with a layer of PCM's (Phase Change Materials). The phase shift effects of PCMs are analyzed, and it is possible to obtain a displacement control in the resonant absorption peaks between the amorphous and crystalline states using the Lorentz-Lorenz relation. Aided in this empirical relation, we analyzed the absorption shift in the intermediate phases between them. The geometric parameters of the structure with the pcm material layer in the semi-crystalline state were optimized to present strong absorption for normal incidence. The effects of the oblique incidence for the TM and TE polarization modes were also analyzed. Our results demonstrate that PCMs have great potential for reconfigurable nanophotonic devices.


Author(s):  
S.S. Kruglov (Jr.) ◽  
◽  
G.L. Patashnikov ◽  
S.S. Kruglov (Sr.) ◽  
◽  
...  

Author(s):  
M. A. Boda ◽  
◽  
R. V. Phand ◽  
A. C. Kotali ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document