spectral imaging
Recently Published Documents


TOTAL DOCUMENTS

2088
(FIVE YEARS 388)

H-INDEX

64
(FIVE YEARS 9)

2022 ◽  
Vol 12 (2) ◽  
pp. 718
Author(s):  
Jiajia Yuan ◽  
Wei Fan ◽  
He Cheng ◽  
Dajie Huang ◽  
Tongyao Du

In this paper, we propose a fast interference spectral imaging system based on liquid crystal (LC) relaxation. The path delay of nematic LC during falling relaxation is used for the scanning of the optical path. Hyperspectral data can be obtained by Fourier transforming the data according to the path delay. The system can obtain two-dimensional spatial images of arbitrary wavelengths in the range of 300–1100 nm with a spectral resolution of 262 cm−1. Compared with conventional Fourier transform spectroscopy, the system can easily collect and integrate all valid information within 20 s. Based on the LC, controlling the optical path difference between two orthogonally polarized beams can avoid mechanical movement. Finally, the potential for application in contactless and rapid non-destructive optical component defect inspection is demonstrated.


2022 ◽  
pp. 000370282110614
Author(s):  
Qi Cheng ◽  
Yongzheng Zhu ◽  
Kaifei Deng ◽  
Zhiqiang Qin ◽  
Jianhua Zhang ◽  
...  

The diagnosis of pulmonary fat embolism (PFE) is of great significance in the field of forensic medicine because it can be considered a major cause of death or a vital reaction. Conventional histological analysis of lung tissue specimens is a widely used method for PFE diagnosis. However, variable and labor-intensive tissue staining procedures impede the validity and informativeness of histological image analysis. To obtain complete information from tissues, a method based on infrared imaging of unlabeled tissue sections was developed to identify pulmonary fat emboli in the present study. We selected 15 PFE-positive lung samples and 15 PFE-negative samples from real cases. Oil red O (ORO) staining and infrared spectral imaging collection were both performed on all lung tissue samples. And the fatty tissue of the abdominal wall and the embolized lipid droplets in the lungs were taken for comparison. The results of the blind, evaluation by pathologists, showed good agreement between the infrared spectral imaging of the lung tissue and the standard histological stained images. Fourier transform infrared (FT-IR) spectroscopic imaging significantly simplifies the typical painstakingly laborious histological staining procedure. And we found a difference between lipid droplets embolized in abdominal wall fat and lung tissue.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012044
Author(s):  
Pratik Mohanty ◽  
Vivek Valagadri ◽  
S Ramya

Abstract Smart Farming System is an emerging concept which utilizes sensors in the field enabled through IoT to get live data from the farm. This paper aims at developing such a Smart Farming system using the highly advanced technology of Texas instruments microcontrollers, MSP430 and TIVA C Series TM4C1294. Along with IoT the system uses Multispectral Imaging in conjunction with Wireless Soil Embedded Sensor Networks. The goal of the system is to provide reliable live data which is obtained from the multiple sensor nodes placed throughout the farm, that use the sink nodes to transfer the data to the cloud. The farmer can access this data using the Blynk Mobile app and can thus take further calculated actions towards maintaining the farm and further monitor the soil/crop health to increase the ultimate yield from his farm.


2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Oliver L. P. Pickford Scienti ◽  
Dimitra G. Darambara

This review article offers an overview of the differences between traditional energy integrating (EI) X-ray imaging and the new technique of X-ray photon counting spectral imaging (x-CSI). The review is motivated by the need to image gold nanoparticles (AuNP) in vivo if they are to be used clinically to deliver a radiotherapy dose-enhancing effect (RDEE). The aim of this work is to familiarise the reader with x-CSI as a technique and to draw attention to how this technique will need to develop to be of clinical use for the described oncological applications. This article covers the conceptual differences between x-CSI and EI approaches, the advantages of x-CSI, constraints on x-CSI system design, and the achievements of x-CSI in AuNP quantification. The results of the review show there are still approximately two orders of magnitude between the AuNP concentrations used in RDEE applications and the demonstrated detection limits of x-CSI. Two approaches to overcome this were suggested: changing AuNP design or changing x-CSI system design. Optimal system parameters for AuNP detection and general spectral performance as determined by simulation studies were different to those used in the current x-CSI systems, indicating potential gains that may be made with this approach.


2021 ◽  
Author(s):  
Juan Florez Ospina ◽  
Abdullah Alrushud ◽  
Daniel Lau ◽  
Gonzalo Arce

2021 ◽  
Vol 11 ◽  
pp. 68
Author(s):  
Madison R. Kocher ◽  
Mark D. Kovacs ◽  
William Stewart ◽  
Brian P. Flemming ◽  
Shaun Hinen ◽  
...  

Dual-energy computed tomography (DECT) has become increasingly available and can be readily incorporated into clinical practice. Although DECT can provide a wide variety of spectral imaging reconstructions, most clinically valuable information is available from a limited number of standard image reconstructions including virtual non-contrast and iodine overlay. The combination of these standard reconstructions can be used for specific diagnostic tasks that provide added value over traditional CT protocols. In this pictorial essay, the added value of these standard reconstructed images will be demonstrated by case examples for diseases specifically related to the gastrointestinal system.


Sign in / Sign up

Export Citation Format

Share Document