scholarly journals Binarization of the gray scale images of droplets during dropwise condensation on textured surfaces

Author(s):  
Solmaz Boroomandi Barati ◽  
Hélène Martin ◽  
Jean-Charles Pinoli ◽  
Stéphane Valette ◽  
Yann Gavet
Author(s):  
Helene Martin ◽  
Solmaz Boroomandi Barati ◽  
Jean-Charles Pinoli ◽  
Stephane Valette ◽  
Yann Gavet

Author(s):  
Jiangtao Cheng

Recently there have appeared multiscale lotus-leaf-like superhydrophobic surfaces that can enhance dropwise condensation in well-tailored supersaturation conditions. However, designs of most biomimetic surfaces were not driven by the understanding of underlying physical mechanisms. We report energy-based analysis of growth dynamics of condensates from surface cavities. As observed in condensation experiments, these textured surfaces with two tier roughness are superior to flat or solely nanotextured surfaces in spatial control of condensate droplets. To understand the role of condensate state transition in enhancing condensation heat transfer, we considered adhesion energy, viscous dissipation and contact line dissipation as the main portion of resistant energy that needs to be overcome by the condensates formed in surface cavities. By minimizing the energy barrier associated with the self-pulling process, we optimized first tier roughness on the hierarchically textured surfaces allowing condensates to grow preferentially in the out-of-plane direction. The nano-roughness of the second tier plays an important role in abating the adhesion energy in the cavities and contact line pinning. From the perspective of molecular kinetic theory, the dual scale engineered surface is beneficial to remarkably mitigating contact line dissipation. This study indicates that scaling down surface roughness to submicron scale can facilitate self-propelled condensate removal.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Basant Singh Sikarwar ◽  
Nirmal Kumar Battoo ◽  
Sameer Khandekar ◽  
K. Muralidhar

Experimental observations of dropwise condensation of water vapor on a chemically textured surface of glass and its detailed computer simulation are presented. Experiments are focused on the pendant mode of dropwise condensation on the underside of horizontal and inclined glass substrates. Chemical texturing of glass is achieved by silanation using octyl-decyl-tri-chloro-silane (C18H37C13Si) in a chemical vapor deposition process. The mathematical model is built in such a way that it captures all the major physical processes taking place during condensation. These include growth due to direct condensation, droplet coalescence, sliding, fall-off, and renucleation of droplets. The effects arising from lyophobicity, namely, the contact angle variation and its hysteresis, inclination of the substrate, and saturation temperature at which the condensation is carried out, have been incorporated. The importance of higher order effects neglected in the simulation is discussed. The results of model simulation are compared with the experimental data. After validation, a parametric study is carried out for cases not covered by the experimental regime, i.e., various fluids, substrate inclination angle, saturation temperature, and contact angle hysteresis. Major conclusions arrived at in the study are the following: The area of droplet coverage decreases with an increase in both static contact angle of the droplet and substrate inclination. As the substrate inclination increases, the time instant of commencement of sliding of the droplet is advanced. The critical angle of inclination required for the inception of droplet sliding varies inversely with the droplet volume. For a given static contact angle, the fall-off time of the droplet from the substrate is a linear function of the saturation temperature. For a given fluid, the drop size distribution is well represented by a power law. Average heat transfer coefficient is satisfactorily predicted by the developed model.


Author(s):  
Sara S. Beaini ◽  
Hector Mendoza ◽  
Van P. Carey

Superhydrophobic/hydrophobic surfaces, developed to promote dropwise condensation, can be produced by modifying the surface chemically with low surface energy films, and/or structurally by fabricating micro-textured surfaces. Some research has reported the increased thermal resistance from the added chemical layer and its effect on condensation heat transfer. A critical question of interest is the thermal resistance due to micro-pillared structures and their influence on droplet growth during condensation as compared to smooth or non-textured surfaces. Though idealized, this paper presents a theoretical and computational model for evaluating and quantifying the effects of the pillared structures thermal resistance, as well as the continuum versus non-continuum mechanisms affecting droplet growth during dropwise condensation. The model is used to compare different micro-pillared surfaces, cited in the literature, and to predict which micro-pillar dimensions contribute to slower condensate growth despite the higher contact angle advantage during dropwise condensation.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Jae Bin Lee ◽  
Joo Hyun Moon ◽  
Minhaeng Cho ◽  
Seong Hyuk Lee

For occurring dropwise condensation, the droplet growth behavior such as single droplet growth, coalescence, and fall-off of large droplets play a major role in regard to condensation heat transfer and water harvesting. The present study visualized the droplet growth behavior of dropwise condensation which might be controlled by the surface tension. We used three copper plate with different hole area fraction (i.e., ϕ=0, 0.148 and 0.439). Surface texturing was conducted by using a μ-computer numerical control (μ-CNC) machine and composed of micro-holes (diameter: 300 μm, depth: 200 μm) with 691 μm, 401 μm pitch. To make the hydrophobic surfaces, the copper surfaces were coated self-assembled monolayer (SAM). From the results, it was found that for only SAM coated surface, random coalescence occurred and affected the droplet growth significantly, whereas for textured SAM coated surfaces, the droplet started to be grown up at the textured holes and coalesced near the holes, indicating that capillary effects might affect the droplet growth mechanism. In particular, the fall-off time at which a coalesced droplet is removed away from the surface increased when the textured surfaces was used, because of surface tension effect increased by the textured holes.


Sadhana ◽  
2013 ◽  
Vol 38 (6) ◽  
pp. 1135-1171 ◽  
Author(s):  
BASANT SINGH SIKARWAR ◽  
SAMEER KHANDEKAR ◽  
K MURALIDHAR

Sign in / Sign up

Export Citation Format

Share Document