Indoor point cloud recognition with deep convolutional networks

Author(s):  
Jiliang Li ◽  
Luhua Fu ◽  
Peng Wang ◽  
Changku Sun
Author(s):  
Y. Ao ◽  
J. Wang ◽  
M. Zhou ◽  
R. C. Lindenbergh ◽  
M. Y. Yang

<p><strong>Abstract.</strong> Panoramic images are widely used in many scenes, especially in virtual reality and street view capture. However, they are new for street furniture identification which is usually based on mobile laser scanning point cloud data or conventional 2D images. This study proposes to perform semantic segmentation on panoramic images and transformed images to separate light poles and traffic signs from background implemented by pre-trained Fully Convolutional Networks (FCN). FCN is the most important model for deep learning applied on semantic segmentation for its end to end training process and pixel-wise prediction. In this study, we use FCN-8s model that pre-trained on cityscape dataset and finetune it by our own data. The results show that in both pre-trained model and fine-tuning, transformed images have better prediction results than panoramic images.</p>


2019 ◽  
Vol 125 ◽  
pp. 514-520 ◽  
Author(s):  
Cheng Zou ◽  
Bingwei He ◽  
Mingzhu Zhu ◽  
Liwei Zhang ◽  
Jianwei Zhang

2021 ◽  
pp. 1-10
Author(s):  
Bin Jiang ◽  
Xinyu Wang ◽  
Li Huang ◽  
Jian Xiao

 Graph Convolutional Networks are able to characterize non-Euclidean spaces effectively compared with traditional Convolutional Neural Networks, which can extract the local features of the point cloud using deep neural networks, but it cannot make full use of the global features of the point cloud for semantic segmentation. To solve this problem, this paper proposes a novel network structure called DeepGCNs-Att that enables deep Graph Convolutional Network to aggregate global context features efficiently. Moreover, to speed up the computation, we add an Attention layer after the Graph Convolutional Network Backbone Block to mutually enhance the connection between the distant points of the non-Euclidean space. Our model is tested on the standard benchmark S3DIS. By comparing with other deep Graph Convolutional Networks, our DeepGCNs-Att’s mIoU has at least two percent higher than that of all other models and even shows excellent results in space complexity and computational complexity under the same number of Graph Convolutional Network layers.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document