Laser-induced damage resistance enhancement of fused silica optics by rapid laser micromachining

Author(s):  
Li Zhou ◽  
Youen Jiang ◽  
Hui Wei ◽  
Peng Zhang ◽  
Xue Pan ◽  
...  
2016 ◽  
Vol 55 (9) ◽  
pp. 2252 ◽  
Author(s):  
Liang Lv ◽  
Ping Ma ◽  
Jinyong Huang ◽  
Xiang He ◽  
Chao Cai ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1226
Author(s):  
Wanli Zhang ◽  
Feng Shi ◽  
Ci Song ◽  
Ye Tian ◽  
Yongxiang Shen

The enhancement of laser damage resistance of fused silica optics was a hotspot in scientific research. At present, a variety of modern processes have been produced to improve the laser induced damage threshold (LIDT) of fused silica optics. They included pre-treatment processes represented by flexible computer controlled optical surfacing (CCOS), magnetorheological finishing (MRF), ion beam finishing (IBF), and post-treatment processes represented by dynamic chemical etching (DCE). These have achieved remarkable results. However, there are still some problems that need to be solved urgently, such as excessive material removal, surface accuracy fluctuation in the DCE process, and the pollution in MRF process, etc. In view of above problems, an MRF, CCOS, IBF and shallow DCE combined technique was used to process fused silica optics. The surface morphology could be greatly controlled and chemical etching depth was reduced, while the LIDT increased steadily. After processing by this combined technique, the LIDT increased to 12.1 J/cm2 and the laser damage resistance properties of fused silica were significantly enhanced. In general, the MRF, IBF, CCOS and shallow DCE combined technique brought much help to the enhancement of laser damage resistance of fused silica, and could be used as a process route in the manufacturing process of fused silica.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1294
Author(s):  
Yaoyu Zhong ◽  
Yifan Dai ◽  
Feng Shi ◽  
Ci Song ◽  
Ye Tian ◽  
...  

Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted. The results reveal that IBE has an evident cleaning effect on surfaces. Impurity contamination beneath the polishing redeposition layer can be mitigated through IBE. Chemical structural defects can be significantly reduced, and surface densification is weakened after IBE without damaging the precision of the fused silica surface. The photothermal absorption on the fused silica surface can be decreased by 41.2%, and the laser-induced damage threshold can be raised by 15.2% after IBE at 250 nm. This work serves as an important reference for characterizing nanoscale damage precursors and using IBE technology to increase the laser damage resistance of fused silica optics.


Author(s):  
Guohang Hu ◽  
Yueliang Wang ◽  
Junxiu Chang ◽  
Xiaoyi Xie ◽  
Yuanan Zhao ◽  
...  

Rapid growth processing of KDP crystals was improved by employing continuous filtration to eliminate bulk defects. The performances of the KDP crystals, including scattering defects, laser damage resistance and transmittance, were measured and analyzed. Compared with rapid-grown KDP without continuous filtration, the transmittance in the near-infrared was increased by at least 2%, almost all of ‘micron size’ defects were eliminated and ‘sub-micron size’ defects were decreased by approximately 90%. Laser damage testing revealed that the laser-induced damage thresholds (LIDTs), as well as the consistency of the LIDTs from sample to sample, were improved greatly. Moreover, it identified that ‘micron size’ defects were the precursors which initiated laser damage at relative lower laser fluence (4–6 J cm−2), and there was a lower correlation between smaller size scattering defects and laser damage initiation. The improved consistency in the LIDTs, attributed to elimination of ‘micron size’ defects, and LIDT enhancement originated from the decreased absorption of the KDP crystals.


2021 ◽  
Author(s):  
Akito Uemura ◽  
Haruki Marui ◽  
Yuya Tsunezuka ◽  
Daichi Shima ◽  
Tomosumi Kamimura ◽  
...  

1998 ◽  
Author(s):  
Alberto Salleo ◽  
Francois Y. Genin ◽  
J. M. Yoshiyama ◽  
Christopher J. Stolz ◽  
Mark R. Kozlowski

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Wei Liao ◽  
Chuanchao Zhang ◽  
Xiaofen Sun ◽  
Lijuan Zhang ◽  
Xiaodong Yuan

An improved method is presented to scan the full-aperture optical surface rapidly by using galvanometer steering mirrors. In contrast to the previous studies, the scanning velocity is faster by several orders of magnitude. The velocity is chosen to allow little thermodeposition thus providing small and uniform residual stress. An appropriate power density is set to obtain a lower processing temperature. The proper parameters can help to prevent optical surface from fracturing during operation at high laser flux. S-on-1 damage test results show that the damage threshold of scanned area is approximately 40% higher than that of untreated area.


Sign in / Sign up

Export Citation Format

Share Document