Seismoacoustic effects of strong earthquakes

2021 ◽  
Author(s):  
irina sanina ◽  
Yuri Rybnov ◽  
Natalya Konstantinovskaya ◽  
Margarita Nesterkina
Keyword(s):  
Author(s):  
M. Gaponova ◽  
◽  
V. Smirnov ◽  
E. Smirnova ◽  
M. Tsidilina ◽  
...  
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


2021 ◽  
Vol 13 (9) ◽  
pp. 1752
Author(s):  
Nikos Svigkas ◽  
Anastasia Kiratzi ◽  
Andrea Antonioli ◽  
Simone Atzori ◽  
Cristiano Tolomei ◽  
...  

The active collision of the Apulian continental lithosphere with the Eurasian plate characterizes the tectonics of the Epirus region in northwestern Greece, invoking crustal shortening. Epirus has not experienced any strong earthquakes during the instrumental era and thus there is no detailed knowledge of the way the active deformation is being expressed. In March 2020, a moderate size (Mw 5.8) earthquake sequence occurred close to the Kanallaki village in Epirus. The mainshock and major aftershock focal mechanisms are compatible with reverse faulting, on NNW-ESE trending nodal planes. We measure the coseismic surface deformation using radar interferometry and investigate the possible fault geometries based on seismic waveforms and InSAR data. Slip distribution models provide good fits to both nodal planes and cannot resolve the fault plane ambiguity. The results indicate two slip episodes for a N337° plane dipping 37° to the east and a single slip patch for a N137° plane dipping 43° to 55° to the west. Even though the area of the sequence is very close to the triple junction of western Greece, the Kanallaki 2020 activity itself seems to be distinct from it, in terms of the acting stresses.


Sign in / Sign up

Export Citation Format

Share Document