Real-time health monitoring of civil infrastructure systems in Colombia

Author(s):  
Peter Thomson ◽  
Johannio Marulanda Casas ◽  
Johannio Marulanda Arbelaez ◽  
Juan Caicedo
2020 ◽  
Author(s):  
Manousos Valyrakis ◽  
Panagiotis Michalis ◽  
Yi Xu ◽  
Pablo Gaston Latessa

<p>Ageing infrastructure alongside with extreme climatic conditions pose a major threat for the sustainability of civil infrastructure systems with significant societal and economic impacts [1]. A main issue also arises from the fact that past and existing methods that incorporate the risk of climatic hazards into infrastructure design and assessment methods are based on historical records [2].</p><p>Major flood incidents are the factor of evolving geomorphological processes, which cause a drastic reduction in the safe capacity of structures (e.g. bridges, dams). Many efforts focused on the development and application of monitoring techniques to provide real-time assessment of geomorphological conditions around structural elements [1, 3, 4]. However, the current qualitative visual inspection practice cannot provide reliable assessment of geomorphological effects at bridges and other water infrastructure.</p><p>This work presents an analysis of the useful experience and lessons learnt from past monitoring efforts applied to assess geomorphological conditions at bridges and other types of water infrastructure. The main advantages and limitations of each monitoring method is summarized and compared, alongside with the key issues behind the failure of existing instrumentation to provide a solution. Finally, future directions on scour monitoring is presented focusing on latest advances in soil and remote sensing methods to provide modern and reliable alternatives for real-time monitoring and prediction [5, 6] of climatic hazards of infrastructure at risk.</p><p> </p><p>References</p><p>[1] Michalis, P., Konstantinidis, F. and Valyrakis, M. (2019) The road towards Civil Infrastructure 4.0 for proactive asset management of critical infrastructure systems. Proceedings of the 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC2019), Chania, Greece, 23–26 June 2019.</p><p>[2] Pytharouli, S., Michalis, P. and Raftopoulos, S. (2019) From Theory to Field Evidence: Observations on the Evolution of the Settlements of an Earthfill Dam, over Long Time Scales. Infrastructures 2019, 4, 65.</p><p>[3] Koursari, E., Wallace, S., Valyrakis, M. and Michalis, P. (2019). The need for real time and robust sensing of infrastructure risk due to extreme hydrologic events, 2019 UK/ China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-3. doi: 10.1109/UCET.2019.8881865</p><p>[4] Michalis, P., Saafi, M. and M.D. Judd. (2012) Integrated Wireless Sensing Technology for Surveillance and Monitoring of Bridge Scour. Proceedings of the 6th International Conference on Scour and Erosion, France, Paris, pp. 395-402.</p><p>[5] Valyrakis, M., Diplas, P., and Dancey, C.L. (2011) Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.</p><p>[6] Valyrakis, M., Michalis, P. and Zhang, H. (2015) A new system for bridge scour monitoring and prediction. Proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, pp. 1-4.</p>


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
V. Bennett ◽  
T. Abdoun ◽  
M. Zeghal ◽  
A. Koelewijn ◽  
M. Barendse ◽  
...  

Real-time monitoring of civil infrastructure provides valuable information to assess the health and condition of the associated systems. This paper presents the recently developed shape acceleration array (SAA) and local system identification (SI) technique, which constitute a major step toward long-term effective health monitoring and analysis of soil and soil-structure systems. The SAA is based on triaxial micro-electro-mechanical system (MEMS) sensors to measure in situ deformation (angles relative to gravity) and dynamic accelerations up to a depth of one hundred meters. This paper provides an assessment of this array's performance for geotechnical instrumentation applications by reviewing the recorded field data from a bridge replacement site and a full-scale levee test facility. The SI technique capitalizes on the abundance of static and dynamic measurements from the SAA. The geotechnical properties and constitutive response of soil contained within a locally instrumented zone are analyzed and identified independently of adjacent soil strata.


Sign in / Sign up

Export Citation Format

Share Document