Virtual voxel: a quantitative figure of merit for autostereoscopic display technology and implementation

Author(s):  
Melvin W. Siegel ◽  
Leonard Lipton
1993 ◽  
Author(s):  
Todd C. Touris ◽  
Jesse B. Eichenlaub ◽  
John O. Merritt

2021 ◽  
Author(s):  
Neil Dodgson

A head-tracked display could be made from a two-view autostereoscopic display where head-tracking allows the display to swap the two views when the eyes move from viewing zone to viewing zone. Variations in human interpupillary distance mean that this basic two-view version will not work well for the significant minority of the population who have interpupillary distance significantly different from the average. Woodgate et al. proposed, in 1997, that a three-view system would work well. Analysis of an ideal version of their proposal shows that it does work well for the vast majority of the population. However, most multi-view, multi-lobe autostereoscopic displays have drawbacks which mean that, in practice, such a system would be unacceptable because of the inter-view dark zones generated by the inter-pixel dark zones on the underlying display technology. Variations of such displays have been developed which remove the inter-view dark zones by allowing adjacent views to overlap with one another: the views appear to smoothly blend from one to the next at the expense of a little blurring. Such displays need at least five viewing zones to accommodate the majority of the adult population with head-tracking and at least six viewing zones to accommodate everyone. © 2006 SPIE-IS&T.


2021 ◽  
Author(s):  
Neil Dodgson

A head-tracked display could be made from a two-view autostereoscopic display where head-tracking allows the display to swap the two views when the eyes move from viewing zone to viewing zone. Variations in human interpupillary distance mean that this basic two-view version will not work well for the significant minority of the population who have interpupillary distance significantly different from the average. Woodgate et al. proposed, in 1997, that a three-view system would work well. Analysis of an ideal version of their proposal shows that it does work well for the vast majority of the population. However, most multi-view, multi-lobe autostereoscopic displays have drawbacks which mean that, in practice, such a system would be unacceptable because of the inter-view dark zones generated by the inter-pixel dark zones on the underlying display technology. Variations of such displays have been developed which remove the inter-view dark zones by allowing adjacent views to overlap with one another: the views appear to smoothly blend from one to the next at the expense of a little blurring. Such displays need at least five viewing zones to accommodate the majority of the adult population with head-tracking and at least six viewing zones to accommodate everyone. © 2006 SPIE-IS&T.


2020 ◽  
Author(s):  
Neil Dodgson

A head-tracked display could be made from a two-view autostereoscopic display where head-tracking allows the display to swap the two views when the eyes move from viewing zone to viewing zone. Variations in human interpupillary distance mean that this basic two-view version will not work well for the significant minority of the population who have interpupillary distance significantly different from the average. Woodgate et al. proposed, in 1997, that a three-view system would work well. Analysis of an ideal version of their proposal shows that it does work well for the vast majority of the population. However, most multi-view, multi-lobe autostereoscopic displays have drawbacks which mean that, in practice, such a system would be unacceptable because of the inter-view dark zones generated by the inter-pixel dark zones on the underlying display technology. Variations of such displays have been developed which remove the inter-view dark zones by allowing adjacent views to overlap with one another: the views appear to smoothly blend from one to the next at the expense of a little blurring. Such displays need at least five viewing zones to accommodate the majority of the adult population with head-tracking and at least six viewing zones to accommodate everyone. © 2006 SPIE-IS&T.


2020 ◽  
Author(s):  
Neil Dodgson

A head-tracked display could be made from a two-view autostereoscopic display where head-tracking allows the display to swap the two views when the eyes move from viewing zone to viewing zone. Variations in human interpupillary distance mean that this basic two-view version will not work well for the significant minority of the population who have interpupillary distance significantly different from the average. Woodgate et al. proposed, in 1997, that a three-view system would work well. Analysis of an ideal version of their proposal shows that it does work well for the vast majority of the population. However, most multi-view, multi-lobe autostereoscopic displays have drawbacks which mean that, in practice, such a system would be unacceptable because of the inter-view dark zones generated by the inter-pixel dark zones on the underlying display technology. Variations of such displays have been developed which remove the inter-view dark zones by allowing adjacent views to overlap with one another: the views appear to smoothly blend from one to the next at the expense of a little blurring. Such displays need at least five viewing zones to accommodate the majority of the adult population with head-tracking and at least six viewing zones to accommodate everyone. © 2006 SPIE-IS&T.


1997 ◽  
Vol 161 ◽  
pp. 711-717 ◽  
Author(s):  
John W. Dreher ◽  
D. Kent Cullers

AbstractWe develop a figure of merit for SETI observations which is anexplicitfunction of the EIRP of the transmitters, which allows us to treat sky surveys and targeted searches on the same footing. For each EIRP, we calculate the product of terms measuring the number of stars within detection range, the range of frequencies searched, and the number of independent observations for each star. For a given set of SETI observations, the result is a graph of merit versus transmitter EIRP. We apply this technique to several completed and ongoing SETI programs. The results provide a quantitative confirmation of the expected qualitative difference between sky surveys and targeted searches: the Project Phoenix targeted search is good for finding transmitters in the 109to 1014W range, while the sky surveys do their best at higher powers. Current generation optical SETI is not yet competitive with microwave SETI.


Sign in / Sign up

Export Citation Format

Share Document