High-speed imaging system based on spectral optical coherence tomography

2005 ◽  
Author(s):  
Xiaodong Chen ◽  
Wanhui Li ◽  
Yi Wang ◽  
Daoyin Yu
2003 ◽  
Vol 28 (19) ◽  
pp. 1745 ◽  
Author(s):  
Maciej Wojtkowski ◽  
Tomasz Bajraszewski ◽  
Piotr Targowski ◽  
Andrzej Kowalczyk

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6463
Author(s):  
Sevin Samadi ◽  
Javad Dargahi ◽  
Sivakumar Narayanswamy

We report the design of a high-efficiency spectral-domain spectrometer with cylindrical optics for line scanning optical coherence tomography (OCT). The spectral nonlinearity in k space (wavenumber) lowers the depth-dependent signal sensitivity of the spectrometers. For linearizing, in this design, grating and prism have been introduced. For line scanning, a cylindrical mirror is utilized in the scanning part. Line scanning improves the speed of imaging compared to fly-spot scanning. Line scanning OCT requires a spectrometer that utilizes cylindrical optics. In this work, an optical design of a linear wavenumber spectrometer with cylindrical optics is introduced. While there are many works using grating and prism to linearize the K space spectrometer design, there is no work on linearizing the k-space spectrometer with cylindrical optics for line scanning that provides high sensitivity and high-speed imaging without the need for resampling. The design of the spectrometer was achieved through MATLAB and ZEMAX simulations. The spectrometer design is optimized for the broadband light source with a center wavelength of 830 ± 100 nm (8.607 μm−1− 6.756 μm−1 in k-space). The variation in the output angle with respect to the wavenumber can be mentioned as a nonlinearity error. From our design results, it is observed that the nonlinearity error reduced from 147.0115 to 0.0149 Δθ*μm within the wavenumber range considered. The use of the proposed reflective optics for focusing reduces the chromatic aberration and increases image quality (measured by the Strehl ratio (SR)). The complete system will provide clinicians a powerful tool for real-time diagnosis, treatment, and guidance in surgery with high image quality for in-vivo applications.


2015 ◽  
Author(s):  
◽  
Miao Zhang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Optical coherence tomography (OCT) is an imaging technique that has been widely used in clinics and industrial fields. This dissertation, making use of several emerging techniques, works on improving the imaging speed and sensitivity of current OCT systems so that it will be more powerful in imaging biological tissues, live animals and human patients. Dual-band Fourier domain OCT (FD-OCT) has the potential to provide high quality images that can differentiate different types of tissues. However, previous dual-band FD-OCT systems could not give correct information due to inherited limitations in imaging system setup, sample properties and theory. Our new imaging system overcomes these limitations by using unique hardware and software design. In our imaging system, different false signals are suppressed and the signal attenuation due to samples are compensated using proposed algorithms that derived from theoretical analysis. A video card is used to process data in an ultrahigh speed. With high imaging speed we are able to imaging live animals despite the movement of subjects. The high speed also makes it possible to display the imaging volume interactively in 3D. The image quality and information contained in the images are improved. We further developed an OCT imaging system using a special kind of optical beam called finite energy Airy beam. Compared to OCT system using traditional optical beams, Airy beam OCT has the potential to view a much longer range and view deeper inside the biological tissue.


2006 ◽  
Vol 14 (26) ◽  
pp. 12902 ◽  
Author(s):  
H. Lim ◽  
M. Mujat ◽  
C. Kerbage ◽  
E. C. W. Lee ◽  
Y. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document