Towards high speed high sensitivity optical coherence tomography for in vivo functional imaging

2015 ◽  
Author(s):  
◽  
Miao Zhang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Optical coherence tomography (OCT) is an imaging technique that has been widely used in clinics and industrial fields. This dissertation, making use of several emerging techniques, works on improving the imaging speed and sensitivity of current OCT systems so that it will be more powerful in imaging biological tissues, live animals and human patients. Dual-band Fourier domain OCT (FD-OCT) has the potential to provide high quality images that can differentiate different types of tissues. However, previous dual-band FD-OCT systems could not give correct information due to inherited limitations in imaging system setup, sample properties and theory. Our new imaging system overcomes these limitations by using unique hardware and software design. In our imaging system, different false signals are suppressed and the signal attenuation due to samples are compensated using proposed algorithms that derived from theoretical analysis. A video card is used to process data in an ultrahigh speed. With high imaging speed we are able to imaging live animals despite the movement of subjects. The high speed also makes it possible to display the imaging volume interactively in 3D. The image quality and information contained in the images are improved. We further developed an OCT imaging system using a special kind of optical beam called finite energy Airy beam. Compared to OCT system using traditional optical beams, Airy beam OCT has the potential to view a much longer range and view deeper inside the biological tissue.

2020 ◽  
Vol 245 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Arash Dadkhah ◽  
Shuliang Jiao

We have developed a multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography, optical coherence tomography angiography, and confocal fluorescence microscopy in one platform. The system is able to image complementary features of a biological sample by combining different contrast mechanisms. We achieved fast imaging and large field of view by combining optical scanning with mechanical scanning, similar to our previous publication. We have demonstrated the capability of the multimodal imaging system by imaging a mouse ear in vivo. Impact statement Photoacoustic microscopy-based multimodal imaging technology can provide high-resolution complementary information for biological tissues in vivo. It will potentially bring significant impact on the research and diagnosis of diseases by providing combined structural and functional information.


2021 ◽  
Author(s):  
Antonio Mauro

Optical Coherence Tomography (OCT) is an addition to the other tomographic imaging techniques of x-ray computed tomography, magnetic resonance imaging, and ultrasound imaging. OCT uses optical reflections of biological tissues as opposed to x-rays, RF fields, and sound waves to obtain images. A rotary and pullback system has been developed for use with OCT. The system was developed to facilitate the three dimensional imaging of various lumens in humans and animals. The system is capable of rotating at a rate of 200 Hz. At this rate the rotary system will allow for a frame acquisition rate of 200 fps which is significantly higher than the highest published acquisition rate to date of 108 fps. The probes used with the system were modeled after the Intravascular Ultrasound (IVUS) miniature torque cable design. The probes can be sealed and sterilized between subjects without being damaged; unlike the single use IVUS probes. The rotary system was used to image the outer ear of a mouse in vivo. A lateral slice from the resulting three dimensional image was compared to the general histology of a mouse ear. The image compared well to the general anatomy as found on the histology.


2021 ◽  
Author(s):  
Antonio Mauro

Optical Coherence Tomography (OCT) is an addition to the other tomographic imaging techniques of x-ray computed tomography, magnetic resonance imaging, and ultrasound imaging. OCT uses optical reflections of biological tissues as opposed to x-rays, RF fields, and sound waves to obtain images. A rotary and pullback system has been developed for use with OCT. The system was developed to facilitate the three dimensional imaging of various lumens in humans and animals. The system is capable of rotating at a rate of 200 Hz. At this rate the rotary system will allow for a frame acquisition rate of 200 fps which is significantly higher than the highest published acquisition rate to date of 108 fps. The probes used with the system were modeled after the Intravascular Ultrasound (IVUS) miniature torque cable design. The probes can be sealed and sterilized between subjects without being damaged; unlike the single use IVUS probes. The rotary system was used to image the outer ear of a mouse in vivo. A lateral slice from the resulting three dimensional image was compared to the general histology of a mouse ear. The image compared well to the general anatomy as found on the histology.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


2005 ◽  
Author(s):  
Erich Goetzinger ◽  
Michael Pircher ◽  
Rainer A. Leitgeb ◽  
Adolf F. Fercher ◽  
Christoph K. Hitzenberger

2003 ◽  
Vol 28 (19) ◽  
pp. 1745 ◽  
Author(s):  
Maciej Wojtkowski ◽  
Tomasz Bajraszewski ◽  
Piotr Targowski ◽  
Andrzej Kowalczyk

2020 ◽  
Vol 08 (05) ◽  
pp. E644-E649
Author(s):  
Amy Tyberg ◽  
Isaac Raijman ◽  
Aleksey A. Novikov ◽  
Divyesh V. Sejpal ◽  
Petros C. Benias ◽  
...  

Abstract Background and study aims First-generation optical coherence tomography (OCT) has been shown to increase diagnostic sensitivity for malignant biliary and pancreatic-duct strictures. A newer OCT imaging system, NVision Volumetric Laser Endomicroscopy (VLE), allows for in vivo cross-sectional imaging of the ductal wall at the microstructure level during endoscopic retrograde cholangiopancreatography (ERCP). The aim of this study was to identify and evaluate characteristics on OCT that are predictive of benign and malignant strictures. Patients and methods Consecutive patients from six centers who underwent OCT between September 2016 and September 2017 were included in a dedicated registry. OCT images were analyzed, and nine recurring characteristics were further assessed. Final diagnosis was based on histology and/or surgical pathology. Results 86 patients were included (49 % male, mean age 64.7). OCT was performed in the bile duct in 79 patients and the pancreatic duct in seven. Nine OCT characteristics were identified: dilated hypo-reflective structures (n = 7), onion-skin layering (n = 8), intact layering (n = 17), layering effacement (n = 25), scalloping (n = 20), thickened epithelium (n = 42), hyper-glandular mucosa (n = 13), prominent blood vessels (n = 6), and a hyper-reflective surface (n = 20). Presence of hyper-glandular mucosa, hyper-reflective surface and scalloping significantly increased the odds of malignancy diagnosis by 6 times more (P = 0.0203; 95 % CI 1.3 to 26.5), 4.7 times more (P = 0.0255; 95 % CI 1.2 to 18.0) and 7.9 times more (P = 0.0035; 95 % CI 1.97 to 31.8) respectively. Conclusion By providing in-vivo cross-sectional imaging of the pancreatic and biliary duct wall, OCT technology may improve sensitivity in diagnosing malignant strictures and provide standardizable criteria predictive of malignancy.


2010 ◽  
Vol 15 (3) ◽  
pp. 036024 ◽  
Author(s):  
Hrebesh M. Subhash ◽  
Viviana Davila ◽  
Hai Sun ◽  
Anh T. Nguyen-Huynh ◽  
Alfred L. Nuttall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document