Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration

Author(s):  
J. Rastegar ◽  
C. Pereira ◽  
H.-L. Nguyen
Author(s):  
Haruhiko Asanuma ◽  
Sumito Yamauchi

A locally resonant metastructure is a promising approach for low-frequency vibration attenuation, whereas the attachment of many resonators results in unnecessary and multiple resonance outside the bandgap. To address this issue, we propose a damping metastructure combining local resonators and an autonomous synchronized switch damping circuit. On the basis of modal analysis, we derive an electromechanically coupled equation of the proposed metastructure. The piezo ceramics, which are attached on a small portion of the metastructure and connected to the circuit, remarkably decrease the magnitude of the resonant vibration with no extra sensors, signal processors, or power sources. The displacement at unnecessary resonance was decreased by approximately 75%. The results of the coupled analysis were similar to the experimentally observed results in terms of the location and width of the bandgap on the frequency axis and the decreased displacement for the circuit. The proposed technique can overcome the disadvantage of the metastructure.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


2021 ◽  
Vol 1104 (1) ◽  
pp. 012010
Author(s):  
Laxmi Devi ◽  
Kamlesh Paswan ◽  
Somnath Chattopadhyaya ◽  
Alokesh Pramanik

1981 ◽  
Vol 25 (1) ◽  
pp. 133-143 ◽  
Author(s):  
T. H. Jensen ◽  
F. W. McClain ◽  
H. Grad

Heating of a doublet plasma by driving an axisymmetric mode at low frequency may be an attractive means for auxiliary heating. The attractiveness of the method stems from (1) the low technology required for low-frequency power sources, (2) the fact that the field-shaping coils required for doublets may also be used as the antennae for transmitting the power, (3) the possibility of transmitting the power through a resistive vacuum wall, (4) the insensitivity to the plasma temperature and density and (5) the relative simplicity of the physical model. The utility of the concept depends on the existence of a special axisymmetric eigenmode in the resistive M.HD approximation which is used. This mode has nodes through the elliptic axes of the doublet equilibrium and an antinode at the hyperbolic axis. It is remarkable that the dissipation per cycle of this mode remains large at low plasma resistivity. This paper describes a linear theory for such heating.


2011 ◽  
Vol 25 (5) ◽  
pp. 1231-1234 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Muslim Mahardika ◽  
M. Hamdi ◽  
Kimiyuki Mitsui

2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


Sign in / Sign up

Export Citation Format

Share Document